El rendimiento académico es un factor crítico teniendo en cuenta que, frecuentemente, el bajo rendimiento académico está asociado a una alta tasa de deserción. Esto se ha observado en asignaturas del primer nivel de la carrera de Ingeniería en Sistemas de Información (ISI) de la Universidad Tecnológica Nacional Facultad Regional Resistencia (UTN-FRRe), situada en la ciudad de Resistencia, provincia del Chaco, Argentina, entre ellas Algoritmos y Estructura de Datos, donde el bajo rendimiento académico se observa en proporciones muy altas (entre el 60% y el 80% aproximadamente en los últimos años). En este trabajo se propone la utilización de técnicas de minería de datos sobre información del desempeño de los alumnos de la asignatura mencionada con el propósito de caracterizar los perfiles de alumnos exitosos (buen rendimiento académico) y de aquellos que no lo son (bajo rendimiento académico). La determinación de estos perfiles permitiría a futuro definir acciones específicas tendientes a revertir el bajo rendimiento académico, una vez detectadas las variables asociadas al mismo. En este artículo se describen los modelos de datos y de minería de datos utilizados y se comentan los principales resultados obtenidos
Academic performance is a critical factor considering that poor academic performance is often associated with an attrition rate. This has been observed in subjects of the first level of Information Systems Engineering (ISI) of the National Technological University, Resistencia Regional Faculty (UTN-FRRe), situated in Resistencia city, province of Chaco, Argentine. Among them are Algorithms and Data Structures, where the poor academic performance is observed at very high rates (between 60% and about 80% in recent years). In this paper, we propose the use of data mining techniques on performance information for students of the subject mentioned in order to characterize the profiles of successful students (good academic performance) and those that are not (poor performance). In the future, the determination of these profiles would allow us to define specific actions to reverse poor academic performance, once detected the variables associated with it. This article describes the data models and data mining used and the main results are also commented