Show simple item record

dc.contributor.authorVilella, Laia
dc.contributor.authorConde Alcántara, Ana Isabel
dc.contributor.authorBallcells, David
dc.contributor.authorDíaz Requejo, María Mar 
dc.contributor.authorLledós, Agustín
dc.contributor.authorPérez Romero, Pedro José 
dc.date.accessioned2018-09-18T08:02:34Z
dc.date.available2018-09-18T08:02:34Z
dc.date.issued2017
dc.identifier.citationVilella, L., Conde, A., Balcells, D., Díaz-Requejo, M. M., Lledós, A., & Pérez, P. J. (2017). A competing, dual mechanism for catalytic direct benzene hydroxylation from combined experimental-DFT studies. Chemical Science, 8(12), 8373-8383. https://doi.org/10.1039/c7sc02898aes_ES
dc.identifier.issn2041-6520
dc.identifier.issn2041-6539 (electrónica)
dc.identifier.urihttp://hdl.handle.net/10272/15234
dc.description.abstractA dual mechanism for direct benzene catalytic hydroxylation is described. Experimental studies and DFT calculations have provided a mechanistic explanation for the acid-free, TpxCu-catalyzed hydroxylation of benzene with hydrogen peroxide (Tpx = hydrotrispyrazolylborate ligand). In contrast with other catalytic systems that promote this transformation through Fenton-like pathways, this system operates through a copper-oxyl intermediate that may interact with the arene ring following two different, competitive routes: (a) electrophilic aromatic substitution, with the copper-oxyl species acting as the formal electrophile, and (b) the so-called rebound mechanism, in which the hydrogen is abstracted by the Cu–O moiety prior to the C–O bond formation. Both pathways contribute to the global transformation albeit to different extents, the electrophilic substitution route seeming to be largely favoured.es_ES
dc.description.sponsorshipWe thank MINECO for Grants CTQ2014-52769-C3-1-R and CTQ2014-54071-P and COST Action CARISMA CM1205. D. B. acknowledges the support from the Norwegian Research Council through the Centre of Excellence for Theoretical and Computational Chemistry (CTCC; grant No. 179568/V30), the Norwegian Metacenter for Computational Science (NOTUR; grant nn4654k) and the EU Research Executive Agency for a Marie Curie Fellowship (grant CompuWOC/618303). We also thank CATEDRA CEPSA-UHU for nancial support.es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectHydroxylation
dc.subject.otherHidrogen-peroxide
dc.subject.otherHydroxylation
dc.subject.otherMolecular-oxygen
dc.titleA competing, dual mechanism for catalytic direct benzene hydroxylation from combined experimental-DFT studieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.identifier.doi10.1039/c7sc02898a
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO [CTQ2014-52769-C3-1-R, CTQ2014-54071-P]es_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España

Copyright © 2008-2010. ARIAS MONTANO. Repositorio Institucional de la Universidad de Huelva
Contact Us | Send Feedback |