- DSpace Home
- Browsing by Author
Browsing by Author "Reyes Columé, Manuel"
Now showing items 1-5 of 5
-
Algebraic integrability of nilpotent planar vector fields
Algaba Durán, Antonio; García García, Cristóbal, Matemático
; Reyes Columé, Manuel
(Elsevier, 2021)
We characterize, using normal forms of quasi-homogeneous expansions, the analytic vector fields at nilpotent singular point having an algebraic first integral over the ring C [[ x, y ]] . As a consequence, we provide a ... -
Analytic partial-integrability of a symmetric Hopf-zero degeneracy
Algaba Durán, Antonio; García García, Cristóbal
; Reyes Columé, Manuel
(Cambridge University Press, 2022)
We deal with analytic three-dimensional symmetric systems whose origin is a Hopf-zero singularity. Once it is not completely analytically integrable, we provide criteria on the existence of at least one functionally ... -
Integrability of two dimensional quasi-homogeneous polynomial differential systems
Algaba Durán, Antonio; García García, Cristóbal, Matemático
; Reyes Columé, Manuel
(Rocky Mountain Mathematics Consortium, 2011)
In terms of the conservative-dissipative de composition of a vector field, we characterize the two dimensional quasi-homogeneous polynomial differential systems with a polynomial first integral (in these systems, polynomial ... -
Nilpotent Systems Admitting an Algebraic Inverse Integrating Factor over C((x,y))
Algaba Durán, Antonio; García García, Cristóbal, Matemático
; Reyes Columé, Manuel
(Springer Verlag, 2011)
We characterize the nilpotent systems whose lowest degree quasihomogeneous term is (y, σ xn)T, σ = ±1, which have an algebraic inverse integrating factor over C((x,y)) . In such cases, we show that the systems admit an ... -
Problemas de centro e isocronía : linealización t-homogénea de campos vectoriales
Reyes Columé, Manuel(2009)
En esta memoria, estudiamos varios problemas relacionados con el análisis cualitativo de las ecuaciones diferenciales. Abordamos el problema de isocronía de un punto singular de un sistema de ecuaciones diferenciales ...