THE ASSESSMENT OF ECOLOGICAL STATUS OF MEDITERRANEAN RIVERS BASED ON FISH COMMUNITIES USING A RECENTLY DEVELOPED PREDICTIVE METHOD

Hermoso V., Blanco-Garrido F. and Prenda J.

Biología de las Aguas Epicontinentales
Dpto. Biología Ambiental y S.P., Universidad de Huelva, Spain E-MAIL: jprenda@uhu.es

INTRODUCTION

The use of predictive models is a widespread and powerful tool to asses the ecological status of river systems. This method provide ideal expected conditions (E) to be compared with those really observed (0). The deviation $0 / E$ represents a measure of the true ecological status of a particular site. This approach has been previously applied in several widely accepted formulations, such as the Index of Biotic Integrity or RIVPACS. Here, we present some preliminary results obtained from the adaptation of the recently developed ANNA (Assesment by Near Neighbour Analysis) predictive method (Linke, et al; 2005) to estimate the fish community in Mediterranean rivers. We predict the optimal community from a particular site directly from the community composition found in the environmentally nearest sites. So whatever intermediate artificial classification is avoided.

STUDY AREA AND DATA COLLECTION

The study was carried out in 3 south-western Iberian Peninsula basins (Guadiana, Guadalquivir and Odiel basins) with typical mediterranean regimen. Fish community was sampled by electrofishing. The sixty three studied sites were inhabited by 19 fish species. From them only the 6 most widespread native species were finally included in the analysis.
At the same time a total of 12 environmental variables, both at reach and basin scale, were measured from each sampled site. All of them were more or less free from human influence: stream order, basin surface, evapotranspiration, rainfall, air temperature, slope, source and mouth distance and relative position along the watercourse. With these data we developed the models to predict the expected communities not affected by anthropogenic influences.

THE MODEL

Reference sites

(<5\% abundance of exotic species)
"Perturbed" sites
(>5\% abundance of exotic species)

1 Model construction (30 sites)
Matrix of presence-absence of species
was run trough a
Correspondence Analysis (CA) Obtaining a
Ordination of sites in a three-dimensional space defined by the first three axes
were provided with meaning through
Pearson Correlation + Multiple regression

in order to

Choice of environmental variables as nrodintare

Axes	Multiple regression model	R^{2}	p
1	-0.37^{*} ALTITUDE $+0.43^{*}$ PRECIPTTATION -0.35^{*} S	0.42	<0.001
	-0.47 TTEMPERATURE - 0.37^{*}-IISTANCE TO SOURCE +2.988	0.2	0.00
	$-0.5{ }^{*}$ DISTANCE TO SOURCE +0.168	0.23	0.004

MODEL OPTIMISATION

To improve the predictive power of the model, two steps were followed
a) Evaluation of optimal cut-off point to establish the presence-absence of species

> Fig. 2. Correct classification rates (CRR) $\begin{aligned} & \text { for the model at all possible cut-off } \\ & \text { points at } 0.1 \text { intervals. The blue line }\end{aligned}$ represents presences and red
b) Evaluation of optimal number of neighbour localities to use as predictor

2 Model validation (15 sites)
Environmental variables
Through regression equations obtained above for each axes
Localization of a point in the three-dimensional space defined in the fish CA

Assessment of Euclidean distance to the 6 nearest points

1g. 4. Assessment of modified Euclidean distance from
a reference point and the nearest neighbu a reference point and the nearest neighbour ones.
Iotal aistance in the inree-almensional space is 1 otal assance in tne inree-almensional space is
obtained combining the weights on the three axes obtained combining the weights on the three axes
by the formula showed in the down-right corner.
is transformed in probability of occurrence through

$$
=\frac{\sum_{i-1} x, \frac{1}{\sqrt{d_{n}}}}{\sum_{i-1} \frac{1}{\sqrt{d_{s}}}}
$$

Formula.1. Assessment of probability of presence for each specie in each point. $X_{i}=1$ if the specie is present the neighbour locality and $X_{i}=0$ if it is absent.

Applying the optimal cut-off point obtained Expected taxonomic composition derived from the nearest localities

Calculation of total 0/E for each species and plot all of them
If slope is not different from 1 and intercept not from 0 Model validated

3 Model application (18 sites)

Calculation of $0 / E$ from observed and expected communities at perturbed sites

The model was valid (slope of O/E plot not different from 1 and intercept not from 0). It showed that some localities initially considered as perturbed were not seriously affected by exotic degradation, since their species richness were not different from the expected ($0 / E$ values not different from 1).
The model optimisation showed the ideal cut-off point to consider the presences or absences of species and the optimal number of neighbour localities to include in the prediction to improve its efficiency.
A wide range of habitat types were accounted in the model construction, but the high abundance of exotic species, specially in downstream reaches, made difficult to obtain enough data from there. Additional studies are needed to solve this problem.
Only a few localities were badly perturbed (8/63). They appeared specially in middledownstream reaches, where the more perturbed habitats allowed exotic species to establish permanent populations.

