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Abstract

Background: The Agassi model [1] is an extension of the Lipkin-Meshkov-Gck model [2] (LMG)
that incorporates the pairing interaction. It is a schematic model that describes the interplay
between particle-hole and pair correlations. It was proposd in the 1960's by D. Agassi as a

model to simulate the properties of the quadrupole plus paiing model.

Purpose: The aim of this work is to extend a previous study by Davis and Heiss [3] generalizing
the Agassi model and analyze in detail the phase diagram of tamodel as well as the di erent

regions with coexistence of several phases.

Method: We solve the model Hamiltonian through the Hartree-Fock-Bayoliubov (HFB) approx-
imation, introducing two variational parameters that play the role of order parameters. We

also compare the HFB calculations with the exact ones.

Results: We obtain the phase diagram of the model and clasify the ordeof the di erent quantum
phase transitions appearing in the diagram. The phase diagim presents broad regions where
several phases, up to three, coexist. Moreover, there is @sa line and a point where four

and ve phases are degenerated, respectively.

Conclusions: The phase diagram of the extended Agassi model presents a hizvariety of phases.
Phase coexistence is present in extended areas of the parai®iespace. The model could be

an important tool for benchmarking novel many-body approximations.

PACS numbers: 21.60.Fw, 02.30.0z, 05.70.Fh, 64.60.F-

Keywords: Agassi model, quantum phase transitions, phaseidgram



I. INTRODUCTION

Algebraic bosonic and fermionic models with few degrees aéddom, that arose in di er-
ent areas of physics, served for many years as excellent testls for many-body approxima-
tions appropriate for di erent areas of interest. They are lsaracterized by a simple Lie group
structure [4] and can be solved either analytically, if a dyamical symmetry is realized, or
numerically, for very large system sizes. Let us mention agpical examples, the Jaynes-
Cummings [5] and Dicke [6] models in quantum optics, the LMG adel [2], the two-level
pairing model [7] and the Elliot SU(3) model [8], together wit the more recent interacting
boson model [9] in nuclear physics. The tremendous succetshese models let them to
permeate other areas of physics like quantum chemistry, abensed matter and cold atom
physics.

More recently, the study of quantum phase transitions (QPTsand critical points in
algebraic models has been an intensive eld of research (seeg., [10] and [11]). Two
of the models that we mentioned above, the LMG model, desciily monopole-monopole
interactions, and the two-level pairing model were combidein a single model with an
SO(5) group algebra by Agassi [1] (see also [12]). The Agassidelbhas been scarcely
used in the literature in spite of its great exibility and its simplicity to be solved for
large systems. Although the random phase approximation (RPAHartre-Fock-Bogoliubov
(HFB) [1, 3, 12] and perturbation theory [13] were applied tottis model, modern many-
body theories of intensive use in nuclear physics did not ptaf the model to asess their
applicability and accuracy. As an exception, a recent papexplored the merging of coupled
cluster theory (CCT) and symmetry breaking and restoration14] with the aim posed in
future applications to nuclear physics and quantum chemist

The Agassi model has a very rich phase diagram explored in R with a parity broken
phase related to the monopole interaction and a superconding one associated to the
pairing interaction. We here extend the Agassi model adding more general monopole
interaction that gives rise to a more complex phase diagranmd to several QPTs of di erent
character. We study the model within the mean- eld HFB theoryand compare with exact
diagonalizations in large systems. We also explore the beia of the appropriate order
parameters and derive several critical exponents.

The paper is organized as follows: in Section Il we presentetfalgebraic structure of the



Agassi model and introduce its extension with a new term in thelamiltonian, in Section
lll, the HFB approach is applied to obtain the mean eld energysurfaces and to analyze
the stability of the two families of energy surfaces of the nal, in Section 1V, the structure
of the phase diagram and the nature of the QPTs are establigheand, nally, in Section V,

the summary and conclusions of this work are presented.

Il. THE EXTENDED AGASSI MODEL

The model space of the Agassi model consists in two levels,leatthem with a degeneracy
, being an even number. The single particle states will be kbelled accordingly to the
level, =1 for the upper level and = 1 for the lower one, and to a magnetic quantum
numberm = 1; 2;::; =2, which labels the states within a given level. Thereforehé
model space can be physically interpreted as two sub-shelst are part of a major shell.

Hence, = 2j, with j an integer number. Moreover, can be considered as the parity of

the level, positive for = +1 and negative for = 1.
The Hamiltonian of the extended Agassi model can be written as,
X vy h ) 2i
H="J% g AYAo > J* 4+ 2hAYA,: (1)

0

Please, note that the original Agassi model does not contaihe last term in (1), 2hA}Ao.
As we will see, this term introduces new physical e ects withespect to the original formu-
lation of the model.

In this work we will rede ne the Hamiltonian parameters for cavenience, introducing
the new parameters , , and (see [3]) which are rescaled accordingly to the sizeof the

shell

V = rT— = = h= ——: 2
2 1 g 2 1 2 1 2)
We assume the above three parameters as positive becausentlise will lead to unphysical

situations. Thus, our extended Agassi Hamiltonian reads,

X o i #
H="J° 51 0Aon 2@ 1) J* T+ ] 221.—1 AlAs © ()
The operators appearing in the Hamiltonian (3) are de ned as,
X 1 X
J" = € 1m = J Y%= > CmCim € 1mC 1m (4)
m= j m=j



A{: CX;mC{; m;Aylz Cyl;mCyl; m;A)é: Cyl;mcsl,; m Cy1 mCX;m (5)
m=1 m=1 m=1
X X X
A= Ci. mCm; A 1= C1 mC1m; Ag= (Cl; mC 1tm CimC 1 m); (6)
m=1 m=1 m=1
X
N = m Cim s N=N;+N ;: (7

Whered,, , ¢, are fermion operators that create and annihilate a fermiorespectively in
the single-particle statej ;m i. There are 10 independent generators, Bs, 6 A's and the
particle number, N. Note that N; and N ; are linear combination ofJ° and N. These
operators are the generators of the O(5) algebra.

Therefore, the Hamiltonian (3) can be diagonalized with a Of%asis [1, 15]. On the other
hand, since the Hamiltonian (3) commutes with the parity opeator e {7 °, the eigenstates

of the system will have either positive or negative parity.

. THE HARTREE-FOCK-BOGOLIUVOB APPROACH

In this section we perform the mean- eld energy surface stydof the extended Agassi
model. To this end, and closely following [3], we will use a Hae-Fock transformation
followed by a Bogoliubov one. This approach is well suited rfahis model in which the
Hamiltonian contains both pairing and monopole interactios. As shown in [3], non trivial
BCS and Hartree-Fock broken symmetry solutions are obtainedlrhe Hartree-Fock trans-
formation can be written as,

&, = D o, (8)

and the Bogoliubov one as

- ua, sigmva, m;

o= ud g +sig(m)vamn; )

wheresig(m) stands for the sign ofm, sig(m) = +1 for m> 0 andsig(m)= 1form< 0.



Any calculation in the Agassi model requires to x the system ge,j, and the number
of interacting fermions. For simplicity we will x the ratio between the number of fermions
and the system size. In the following, we will consider thathe number of fermions is 2
i.e., the system is half lled and, therefore, there is a nundr ofj fermion pairs. Under this

assumption, the following conditions are ful lled,
u?, = va , uwi=vi, vE+uP=1 (10)

Therefore, the normal density matrix [3] can be written as,

X
m: om0 = C)?m Como = D; D o0 ay;m aomo = mmo : 0 (11)
0

P
where . o= D. D o V2 On the other hand, the abnormal density matrix [3] is
D E X D E
m mo= Cp oo = D. Doo @@ =Sig(M) m mo ; o (12)
0
P
where . o= D. Douv.
It is possible to write Hartree-Fock and Bogoliubov transfanations in terms of only two

variational parameters,” and , as written below,

D]_;]_: D 1 1:COS§, D 11 = D]_; 1:Sin§ (13)

and

=sin —, = —: 14
\Z1 sm2 Vo 0052 (14)

Therefore, the normal density matrix results,

. . 1
11 = coszism2§+sm2§co§§ =5 cos' cos );
R ' 1
101 = S|n255|n2§+coszzco§§: 5 (L+cos' cos );
1 1 ] 1 1
_ _ . ) . _ H .
S = 4 =coS—=sin=sin® = cos-sin-co¢-= =sin' cos: 15
L1 11 02|23|2 02'2 > 5 S Y (15)

One should note that with the parametrization (13) and (14) ad conditions (10), two
independent phase selections far; and u ; are possible: i)u ; = v = sin5 and u; =
Vi=cC0Sy, andi)u ;=vy=sinyandu; = Vv ;= co0s;. While the normal density

(15) does not depend on the phase selection because the coents appear squared, the



abnormal density matrix does depend on the phase selected.particular, using the positive
sign for both parametersu; and u 4, case i), one gets

. 0= o% sin ; (16)

while for the alternative phase selection, ii) above, the aormal density matrix is,

) . . 1
11 = €C0S? =Sin—=cos= sin® = sin—cos= = ~CoS cos;

2 2 2 2 2 2 2
1 1 1
_ . 2_ . o - o . o = - f .
1 1 = sin® 5 sin cosy cog 5 Sin cos5 5 COS' €os;
= —cos' sinl sin - cos +cos' sinl sin- cos—- = 1sin' sin : (17)
S e R R R 2°2727727 2 '

Depending on the phase selection, di erent energy surfacés and B) are obtained. This

is summarized in Table I. Once the Hartee-Fock-Bogoliubov (H¥) state is de ned, with

TABLE I: Bogoliubov phase selection.

Phase selection Surface

U 1=vy=sin 5

Ui =V 1=CO0S > A
2

a given phase selection, as a function of the variational maneters,’ and , the energy

surface is obtained as the expectation value of the Hamiltam (3)

B )= MHFB (; )jHJHFB(; )i
"7 MHFB(; )JHFB(; )i

(18)

The surface extrema are studied by minimizindg=(; ) with respect to the variational
parameters and, then, analyzing their stability through tte eigenvalues of the Hessian matrix.
This is done in the following two subsections for the two podde phase selections given in
Table 1.



A. Energy surface A

This energy surface is obtained with the selection of phasas stated in the rst row of

Table I. It can be written as,
Ern= "jcos cos gj’si®  Vj2sin®' co$ : (19)

In order to present the results, it is convenient to rescalene energy functional with the

sizej of the system. Then, the energy functional reads,

E : :
j'_'A = cos cos Esm2 Esmz' cog ; (20)

being" an overall constant of energy (note that the term 1 in the denominator of Egs.
(2) is not taken into account because a large value pfis assumed). Although the order
parameters aré and , it is convenient to de ne combinations of them which are e& to
be calculated with a diagonalization. These e ective ordgparameters are
hJ*i hJ i ,
A= — A =gin’
J
Al A A*,
J J
where the subindexA refers to the energyEnx.

COS; (21)

1.
Azp—ésm , 0 A =p; (22)

To study the extrema of (20), rst we impose the derivatives bthe energy surface to be

equal to zero

B _ 2

—— = sin  cos cos + sin“' cos =0;
j'"@
% =sin' cos (1 cos cos )=0: (23)

Later, to determine the nature of the extrema, i.e., minimagaxima or saddle points, we

calculate the Hessian matrix (vertical and horizontal linesre included for clarity),

0 1
0 1 cos( )cos( ) sin( ) sin(" )+
_ cog( )cos(2) 5sin(2 )sin(2') (24)
sin( )sin(" )+ |cos()cos( ) cos(2 )+
> sin(2 )sin(2') cos(2 )sin?(")

The solution of the equations (23) assuming that 6 leads to four cases plus a

particular case in which = . These solutions are,

8



-A)

= =0(Ea=(j")= 1). Regardless the values of and .
The Hessian matrix is, 0
1 0
@ ‘ A (25)

0 |1

with eigenvalues: 1  and 1 . Therefore,
< land < 1: it generates a minimum.
> land > 1: it generates a maximum.

> land < lor < land > 1:itgenerates a saddle point.

Both order parameters are equal to 0. Consequently, the sade E, has spherical

minima Exo=j" = 1when < 1land < 1 (independently of the value).
lI-A) j'j=1] j= 5 (Ea= 3). The extrema do not depend on the values of and . The
Hessian matrix is 0 1
0 1
@ (26)
1
with eigenvalues: 3 P ( )2+4 It turns out that both eigenvalues are

111-A)

always of di erent sign. Therefore, this solution will corespond to a saddle point.

=0,cos' = 1 (EA=(j")= ;*1). Valid for > 1. The Hessian matrix is in this
case 0 1
2 1 O
@ (27)
0
with obvious eigenvalues:2 and . Therefore, for

> it generates a minimum.

< . it generates a saddle point.

The e ective order parameters are

. . P——0o + + +
ho™i, _ h i, _ 21 AlA_AlA_AOA:O

(28)

j j ] ]
Assuming a small parametek such that =1+ x, the critical exponent can be shown

tobe =1=2

= — | 2X; (29)



IV-A)

V-A)

this points towards the existence of a second order QPT.

This solution is linked to a non-zero value of the variatiorigparameter’ associated to
the Hartree-Fock transformation (Eq. (13)), because of thatve will call this solution

the Hartree-Fock (HF) deformed solution. Consequently, theusface E5 has a HF

deformed minimumE,=j" = ;” when > 1 and > (independently of the
value).
''=0,cos =1 (Ep=(j")= ;*1) for > 1. The Hessian matrix is in this case

(30)

. . . 2
with obvious eigenvalues—- and —2.

Therefore, for:

< it generates a minimum.

> ! it generates a saddle point.

Assuming a small parametek such that = 1+ X, the critical exponent can be shown
tobe =1=2

i, h i, AT . AT, _
: = : =0; : = - = —p— X: 31
j j j j Y2 (31)

Again, this points towards the existence of a second order QPT

This solution corresponds to a non-zero value of the variatal parameter linked to
the Bogoliubov transformation (Eq. (14)), because of that ewill call this solution the

BCS deformed solution. Consequently, the surfade, has a BCS deformed minimum

241
2

Easj" = when > 1and < (independently of the value).

cos cos = L1 (EA=(j")= ;*1) for the particular case = .
Solutions 1ll) and 1V) are particular cases of this solutiondr = . The solution

corresponds to a minimum, with one of the eigenvalues of the $tan matrix being
positive, while the other zero, therefore this solution coesponds to a kind of closed
valley. The degeneracy of solutions IlI-A), IV-A), and V-A) is an ndicator of the

presence of a rst order QPT.

10



B. Energy surface B

This energy surface is obtained with the selection of phasas stated in the second row

of Table I. It can be written as,
Eg = "jcos cos 2hj2sin® sin®' Vj?sin’' cog : (32)

Again, in order to present the results, it is convenient to resle the energy functional with
the sizej of the system. Then, the second energy functional reads,

E . . .
j,—,B = cos cos sin 2 sin?" Esmz' cog : (33)
(Note that the factor 1 in the denominator of (2) is not taken into account becauselarge

value ofj is assumed). In this case, the e ective order parameters are
.-
h*ig

J
Al g Ay _
j j
To study the extrema of (33), rst we imposse the derivative®f the energy surface to be

= h]le =sin' cos; (34)

A+
B =0; JO B =sin sin" (35)

equal to zero

% =sin cos (2 Ycos si?' =0;
% =sin' cos cos (2 )sin> cos =0: (36)

Later, to determine the nature of the extrema, i.e., minimamaxima or saddle points, we

calculate the Hessian matrix (vertical and horizontal linesre included for clarity),
1

0 1 cos( )cos( ) cos(2 )+ sin( ) sin(" )+
~ ( 2)sin?()cos(2) [3( 2)sin(2 )sin(2") 37)
sin( )sin(* )+ cos( ) cos( )+
(- 2)sin2 )sin(2) | ( 2)cos(2 )sin’(")
The solution of the equations (36) leads to di erent scenass. These are,
-B) =0,"'" =0 (Eg=j") = 1), regardless the values of and . In this case, the
Hessian matrix is diagonal 0 1
1 0
@ (38)
0 |1

with obvious eigenvalues 1  and 1, therefore:

11



11-B)

111-B)

< 1: it generates a minimum.

> 1: it generates a saddle point.

Both order parameters are equal to 0. Consequently, the sade Eg has spherical

minima Eg=j" = 1 independently of the and  values.
=0, cos' =1 (Ex=(j")= ;”) for > 1. The Hessian matrix is
0 1
1 0
@ A (39)

. . . 2 . .
with obvious eigenvalues—* and +2 X 1 . The rst eigenvalue is always

positive (remember that > 1), and consequently,

3 .
7—. generates a saddle point.

3 .
71~ generates a minimum.

>

<

NI NI

The order parameters will be

. . p
h]TIB:h].IB: 2 1; (40)
J J
Ao Aieg  Maog, (41)
J J J
Again, assuming a small parametex such that =1+ X, the critical exponent can

be shown to be = 1=2. This points to the existence of a second order QPT.
hK*ig _hig P

i
This solution is linked to a non-zero value of the variationaparameter' associated

2X: (42)

to the Hartree-Fock transformation (Eq. (13)). Consequemnyl the surfaceEg has a

HF deformed minimumEg=j" = Z*l when > land < %2—31 (independently

of the  value).

== 5 Es=")= )

The Hessian matrix is 0 1
2 1
@ A (43)
112
. . 1 P ——— .
with eigenvalues; 4 2+4 . Therefore:

12



P— . -
> 1( + 4+ 2)itgenerates a minimum.

i+ P 4+ 2)> > I P 4+ 2): it generates a saddle point.

P— : ,
< 4+ 2)< 0: it generates a maximum.

The order parameters will be

=0, (44)

=1: (45)

Solutions 111-B) and I1-B) become degenerated for =
Solutions 111-B) and I-B) become degenerated for = 1.

Solutions 111-B) and IV-A) ( First energy surfacg become degenerated for =

1+ 2
-

Therefore, the existence of this solution points towards thpresence of a rst order
QPT. This solution is linked to non-zero values of both varigonal parameters ( , ),
one associated to the Hartree-Fock transformation (Eq. (1Band the other to the
Bogoliubov transformation (Eq. (14)), therefore this is a ambined HF-BCS deformed
solution. Consequently, the surfac&g has a deformed HF-BCS minimuntEg =" =

when > 3( + P 4+ 2) (independently of the  value).

IV-B) The last solutions of Egs. (36) imply

cos = cos sin?' (2 ); (46)
cos = cos' 1+(2 ysin? (47)
with an energy P_p
ey L 222 )
T ey

It can be proved that the solutions always correspond to a sdl& point.

Once analyzed both surfaces, the phase diagram of the modelobtained in the next
section taking into account the competition between both staces which give rise to diferent
regions, some of them including coexistence of the three gka: spherical (S), HF deformed
(HF) and BCS deformed (BCS), besides combined the combined HFES deformed solution.

13



IV. PHASE DIAGRAM

Based on the analysis of the previous section, we can derivlase diagram with ve

di erent phases:

Symmetric or spherical solution,'( =0; = 0). It corresponds to solutions I-A) and

I-B) (letters A or B indicate the energy surface).

HF deformed solution, (cos = 1 and = 0). It corresponds to solutions IlI-A) or
[1-B).

BCS deformed solutions,'( =0 and cos = 1). It corresponds to solution IV-A).

Combined HF-BCS deformed solution,'( = 5; = 3). It corresponds to solution
[11-B).

Closed valley (co$ cos = 1= ). It corresponds to solution V-A).

In Fig. 1 we depict the phase diagram of the model. The phaseadram is built considering
that two energy surfaces (A and B) coexist and compite but oplone (except when they are
degenerate) gives the absolute minimum. Concernirtg,, one has to take into account that
their minima only depend on and but they do not depend on , while regarding Eg,
their minima only depends on and but they do not depend on . The region with < 1,

< 1,and < 1 corresponds to the symmetric phase and it is representedthre diagram
with a red sphere. The red vertical surface = 1 with 1 and 1 is a second order
QPT. This can be shown easily looking at the energy values fox 1 whichisE = 1 and

for > 1 whichisE = 1’; ®. These expressions imply a discontinuity in the second omde

derivative of the energy at = 1. The other red vertical surface = 1 with 1 and
1, is also a second order QPT as can be shown by an equivalerguanent. The area
at the right bottom corresponds to the HF deformed shape and is depicted with a blue
prolate shape oriented in the direction of the axis. The area at the left bottom corresponds
to the BCS deformed shape and it is represented with a blackglate shape oriented in the
direction of the axis. The vertical blue plane with = corresponds to a rst order
QPT since at this particular surface solutions I11-A) and IV-A) are degenerated. Besides,

solution V-A) exists, it corresponds to a closed valley in the plane and it is represented

with a black thick oval in the gure. Finally, the region abowe the green surface corresponds

14



to the solution (" = = 3), i.e., to the combined HF-BCS deformed solution and it is

5
represented in the diagram with two crossed green ovals. Tlgeeen surface corresponds to
a rst order QPT since all the energies below the green surfacare independent while

aboveE =

A

*

V]

1 _ Ix”
/ A=
N ES
A= 2%
X
1

Y

FIG. 1. Phase diagram of the extended Agassi Hamiltonian (3) Red vertical planes correspond to

second order QPT surfaces. The green surface ( =1for < l1and <1, = 1+2 ® for >
and = 1+2 2 for < ) and the blue vertical one ( = and < 1; 2) correspond to rst

order critical surfaces. Red sphere, blue oval, black ovablack thick oval, and crossed green ovals
stand for the symmetric solution, the HF deformed solution, the BCS deformed solution, the V-A)

solution, and HF-BCS deformed solution, respectively.

In Fig. 1 we represent the deepest minimum of the lowest engrgurface. However,
because of the presence of two competing energy surfadeg, and Eg, there are areas
where di erent phases coexist. These regions have not beespdtted in Fig. 1 because of
the complexity that would generate in the phase the diagramFor E, the spherical, the
HF deformed and the BCS deformed solutions cannot coexist. Hewver, for Eg di erent
phase can coexist: i) the spherical and the combined HF-BCSfdened shape, and ii) the
combined HF-BCS and the HF deformed. Moreover, the competitiobetweenE, and Eg

produces the coexistence of up to ve di erent minima:

15



Spherical ( =0; =0), HF-BCS deformed minimum ( = =2; = =2) and BCS

deformed one'( =0; arccos(k)).

HF-BCS deformed minimum { = =2; = =2), HF deformed minimum in ( =

arccos(Ex ); =0) and BCS deformed one in'( =0; = arccos(1=)).

Closed valley minimum (for = ) and the combined HF-BCS deformed minimum
(' = =2 = :2)

HF-BCS deformed minimum { = =2; = =2), HF deformed minimum in ( =
arccos(t ); = 0), BCS deformed minimum and the closed valley minimum alan
the line = %2 with = . All the minima are degenerated.

Spherical ( = 0; = 0), HF-BCS deformed minimum ( = =2, = =2), BCS
deformed one'( =0; arccos(¥)), HF deformed minimumin (' =arccos(l= ); =
0), and the closed valley minimum at the point = = = 1. All the minima are
degenerated.

In order to have a more clear image of the phase diagram, in Fig we present 2-
dimensional plots in which one of the control parameters hdmeen kept constant. In panel
(a) we depict the plane = 0:75. Since < 1 the spherical (red S) minimum I-B) al-
ways exists. For > 1 the BCS deformed minimum (black B) also exists, IV-A). For

> 1+ P 4+ 2), which is the spinodal line (full magenta line) oEg, the HF-BCS com-
bined minimum (green =2) appears, I1I-B). This results in di erent areas of coexi®nce
as shown in the gure. The largest most left letter gives the eepest minimum, the second
most left letter indicates the second deepest minimum, an sm. For instance, in the region

>1and > “2—2 three phases coexist: the HF-BCS deformed is the lowest, thére
BCS deformed and higher in energy the spherical phase. In thegion just below, the same
three phases coexist but now the lowest is the BCS deformetieh the spherical and higher
in energy is the combined HF-BCS deformed solution.

In panel (b) of Fig. 2 we present the case = 15. For < 1 the spherical phase,
I-B), always is present. For < the BCS deformed minimum, IV-A), exists. For >

%1( + P 4+ 2), which is the spinodal line (lowest full magenta line) oEg, the HF-BCS

combined minimum (green=2) appears, |l1I-B). For > the HF solution, IlI-A), always

exists. In addition, in the region 1< < and < % 23 which is the anti-spinodal

1 ]
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line (upper full magenta line), the HF deformed solution, 1IB), also exists. Again, di erent

coexistence regions appear as marked in the gure followitige same criteria as in a).

a) b) c)

2

1 1
S c

FIG. 2. Phase diagram for selected planes a) =0:75, b) =1 5, andc) =1 :1. Background
color represents the shape of the deepest minimum, i.e., fulight red for the symmetric phase,
full olive green for combined HF-BCS deformed solution, ful brown for BCS deformed phase, and
full light blue for HF deformed phase. Letters correspond tothe existing phases, i.e., red \S"
for symmetric phase, green \=2" for combined HF-BCS deformed solution, black \B" for BCS
deformed phase, and blue \H" for HF deformed phase. Larger ath left most (or upper) letters
correspond to deepest minima. Black full lines stand for QPB, magenta full ones for spinodal-
antispinodal lines, and black dashed ones for indicating tk change in the ordering of high lying

minima.

In panel (c) of Fig. 2 we analyze the vertical plane = 11. We consider this particular
case because it corresponds to a range of parameters in whioh most complex situation
exists. For < 1 the spherical minimum, I-B), always exists. For< and > 1the BCS

deformed solution, IV-A), exists. For < 422 1 right most magenta line, (which is obtained

from the spinodal line = %.( + P 4+ 2)) the combined HF-BCS deformed exists, [11-B).
For > and > 1 the HF deformed solution exists, IlI-A). In addition, there &ists the
HF deformed solution, II-B), for > 1and > and ful lling the condition related to the

anti-spinodal line, < %2—31
following the same criteria as in a).

Di erent coexistence regions appear as marked in the gure

In summary, the phase diagram presents four regions whereetlshapes are S, HF de-
formed, BCS deformed, and combined HF-BCS deformed, respeely. However, in each

region several minima exist, coexisting up to three phases certain regions. In addition,
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there is a line, = with = 1;—2 in which four phases, HF, BCS, HF-BCS and the
closed valley solutions, are degenerated, plus a singlemipi = = =1, in which the

ve solutions (same as before plus the spherical) are degested. Such a rich phase dia-
gram do not appear even in the case of more complex systems;hsas the proton-neutron
interacting boson model [16], the two- uid Lipkin model [17 or for Hamiltonians with up

two three-body interactions [18].

-1 | b)
-1.02
-1.04¢

108 -~ HFB

J

Energy/

©o o £
w D
T

£ 0.2

OP, . (x107)

©
e

FIG. 3: Comparison of the ground-state energy per fermion pa& and order parameter values for
HFB and exact results for a system withj = 100 and Hamiltonian parameters =0 :5, =0

(" =1) as a function of . Black full lines correspond to exact results and red dashednes to HFB
ones. Panel a) corresponds to the ground state energy, panbk) to OP;2, panel c) to OPAg, panel
d) to OPA% order parameters, and panel e) to the schematic representain of the trajectory in the

parameter space. Please, note that the scale in panels ¢) ard) are multiplied by 100.

V. COMPARISON BETWEEN EXACT AND HARTREE-FOCK-BOGOLIUBOV
RESULTS

In this section we present several cases where we calculagean exact diagonalization
of the Hamiltonian the values of the ground-state energy andf @i erent e ective order
parameters, and compare them with the HFB results.

We de ne the e ective order parameters in terms of the expeation values of the following
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operators for the ground state, although, in general, theyan be used with excited states,

e e

op,, = )'ijw i (49)

OP,; = hA;’ZAO'; (50)
A Agi + AT, A i

OPy; = 17t 2 SaNELY (51)

Note that these quantities di er from Eqgs. (21,22) or Egs. (385) since the expectation
values of single operatord™, J , Ag, A;, and A ; vanish owing to parity conservation in
the exact solution. Therefore, Eqgs. (49, 50, 51) should beropared with the square of either
Egs. (21,22) or Eqs. (34,35).

All the diagonalizations presented in this section are penfimed for systems withj = 100
(100 pairs of fermions),” = 1 and only positive parity states are considered. This nundr
of fermion pairs is large enough to guarantee a good agreeineetween the HFB mean eld

values and the exact ones.
0.6
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Energy/j
' -
5

0

OP, : (x10)

5

I
I
I
J
1.
S

FIG. 4. Same caption as in Fig. 3 but for =1:5, =0 :5, as a function of . Please, note that

the scale in panel c) is multiplied by 100.

First, we consider a trajectory that goes through one of theed vertical surfaces and,
therefore, should correspond to cross a second order QPT.darticular, in Fig. 3 we depict
such a situation, for which we x the parameters = 0:5 and = 0, allowing to vary

the value of between 0 and 5 (see panel (e) for the schematic trajectory). All along
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this trajectory =0, while' = 0for < 1and' = arccost for > 1. This means
that we explore the transition between spherical and HF defored shapes. In panel (a),
the ground state energy is shown as a function of, suggesting the presence of a second
order QPT around = 1. The HFB ground state energy is 1 for < 1 (spherical phase)

and E=(j") = 22+1 for > 1 (HF deformed phase). As stated before, this involves a

discontinuity in the second derivative of the energy with repect to . In panel (b), the
e ective order parameter OP;2 (49) is depicted, and a good agreement between HFB and
exact results is obtained. The HFB value i©P;2 =0 for < 1, whileOP;. =1 & for

> 1. On the other hand, in spite of the good agreement found witihe exact calculations,
we can observe a small discrepancy around the critical point= 1. This is due to the nite
size of the system. In order to describe properly that regioit is needed to take into account
corrections to the size of the system that would improve thessults obtained with the HFB
approach. In panel (c) and (d) the HFB value 0fOP,; (50) and OP,: (51) are depicted,
respectively, and their analytical values are zero all theay. Note that the vertical scale
of these two panels has been multiplied by a factor 100, whidan lead the reader to the
impression that the agreement is poor, which is not the casedause the absolute di erence
between the exact and analytical results is up to order 18. Finally, it is worth noting that
this QPT only involves minima of the rst energy surfaceE,.

In Fig. 4 we move through the horizontal line = 1:5, = 0 :5, as a function of ,

crossing the = vertical plane (see panel (e)), going from the minimum ( = arccos(1= ),

= 0) (HF deformed) to (" =0, = arccos(l=)) (BCS deformed). As we can see, this

QPT transition is of rst order, because the the HFB energy chages from a constant value

E=(")= X% for < L5t0E=(j")= ' for > 15, with a sudden jump from
one minimum to the other, although there is no coexistencen the case of the HFB value
of OP;2 (49)(panel (b)), the expectation value changes fro®P;. = 1 ﬁ for < 15to
zero for > 1.5, presenting a discontinuity in the order parameteOP;- at =1 :5. On
the other hand, in panel (c) one can see how the HFB value f@P,; (50) is strictly zero
for all values, while very small values are obtained in the exact calation (note that
the vertical scale is multiplied by a factor 100). Finally, m panel (d) the mean eld value
for OP,: (51) jumps from zero toOP,z = 1 L at =1 :5. The exact calculation follows,
except for nite number of particle corrections the same betviour. Note that this QPT

only involves minima of the rst energy surfaceEnx.
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Finally, in Fig. 5 we move through a vertical line with =1:5, =2, as a function of ,

crossing the surface = “2 : (see panel (e)), then passing from (= 0; = arccos(1=))
(deformed BCS) to ( = =2; = =2) (combined deformed HF-BCS). The QPT appears
at = % = 1:25. As can be seen in the energy per fermion pair shown in pana),(
the QPT is, once more, of rst order and the HFB energy passesofn E=(j") = 222;} to
E=(") = in =1 :5. In panel (b), the mean eld HFB value forOP;2 (49) is zero all

along the path, while the exact calculation gives a very smalalue (note that the vertical
scale is multiplied by a factor 100). In panel (c) the HBF meaneld value for OP,; (50)
jumps suddenly at = 1:25 from zero to 1. The same behaviour is obtained in the exact
calculation. In panel (d), the HFB mean eld value forOP,z (51) jumps suddenly from

227
consistent result. Note that this QPT involves the change frm a minimum of the energy

OPy: = 2 1 =0:375 to zero at = 1:25, and, once more, the exact calculation gives a

surfaceE,, to another one of the energy surfacgg.
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FIG. 5: Same caption as in Fig. 3 but for =1:5, =2, as a function of . Please, note that the

scale in panel b) is multiplied by 100.

All the above results con rm the structure of the phase diagna shown in Fig. 1 as well

as the character, rst or second order, of the QPTs.
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VI. SUMMARY AND CONCLUSIONS

We have presented an extended version of the Agassi model wahincludes the extra
A}Ao contribution in the Hamiltonian and, therefore, it has four fee parameters,’, g, V,
and h, although we have always considered a non vanishing value fo hence the number

ﬂ and h = 7T We have performed

of e ective free parameters is threeV = ﬂ g=
a HFB mean eld approach and we have got the corresponding eggrsurfaces. It is worth
to be noted that two di erent energy surfaces appear, each endepending only on two of
the control parameters. The existence of two di erent eneggsurfaces is due to the freedom
in the election of the phase in the Bogoliubov transformatia

We have analyzed the equilibrium value of the order paramet ' and , for minima,
maxima and saddle points and we have settled the phase diagraf the model. In the
phase diagram four regions can be distinguished: symmetridF deformed, BCS deformed,
and HF-BCS deformed phases. Moreover, there is a special atian in which the HF and
the BCS deformed minima are correlated, plane = . We have called this situation
closed valley minimum. In the four regions di erent phasesam coexist, in fact, there are
regions with up to three coexisting phases. In addition, thie is a line in which four phases
coexist and are degenerated plus a single point= = = 1 in which the ve phases
are degenerated (spherical, HF deformed, BCS deformed, condal HF-BCS deformed, and
close valley deformed minimum). The ground state is compldy determined by the lowest
energy minimum of the lower energy surface in each region. §lexistence of other minima
does not a ect the ground state properties, but it is expectkto have a strong in uence in
the presence of excited-state quantum phase transition<9]1

Finally, we have compared the exact results with the HFB meaneld values for di erent
observables. In all the cases, good agreement has been ol#divalidating the mean eld
results.

The phase diagram of the present extended Agassi model showsch variety of phases.
Phase coexistence is present in extended areas of the par@mnspace. The model could be

an important tool for benchmarking novel many-body approxnations.
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