Show simple item record

dc.contributor.authorSun, Ting
dc.contributor.authorVasarhelyi, Miklos A.
dc.description.abstractWhile the massive volume of text documents from multiple sources inside and outside of the company provides more information for auditors, the lack of efficient and effective technology solutions hampers the full use of text data. Powered by the emerging data analytics technology of deep learning, the value of the text can be better explored to deliver a higher quality of audit evidence and more relevant business insights. This research analyzes the usefulness of the information provided by various textual data in auditing and introduces deep learning, an evolving Artificial Intelligence approach. Furthermore, it provides a guide for auditors to implement deep learning techniques with predeveloped tools and open-source librarieses_ES
dc.publisherUniversidad de Huelvaes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.subject.otherText Analysises_ES
dc.subject.otherDeep Learninges_ES
dc.subject.otherArtificial Intelligencees_ES
dc.subject.otherBig Dataes_ES
dc.titleEmbracing Textual Data Analytics in Auditing with Deep Learninges_ES

Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España

Copyright © 2008-2010. ARIAS MONTANO. Repositorio Institucional de la Universidad de Huelva
Contact Us | Send Feedback |