Rodingitización y formación de pectolita en diques graníticos de las Peridotitas de Ronda (Cordilleras Béticas, España)

Rodingitization and pectolite development in granitic dykes from the Ronda peridotites (Betic Cordilleras, Spain)

J. J. Esteban (*), J. Cuevas (*), J. M. Tubía (*) e I. Yusta (**)

(*) Dpto. de Geodinámica, Fac. de Ciencias, Universidad del País Vasco, a. p. 844, 48080 Bilbao.
(**) Dpto. de Mineralogía y Petrólogía, Fac. de Ciencias, Universidad del País Vasco, a. p. 844, 48080 Bilbao.

ABSTRACT

This work reports the local occurrence of rodingites formed from granitic dykes intrusive in the Ronda Peridotites. Representative mineral assemblages include chlorite, hydrogроссulite, and prehnite but also pectolite, and xenolithite uncommon mineral in rodingites. In addition, some granitic dykes are characterized by the albization of plagioclases. The development of larderlite in the adjacent serpentinites suggests that rodingitization was a low-temperature metasomatic process, which affects the granitic dykes in contact with peridotites during serpentinization.

Key words: Rodingite, pectolite, Ronda peridotites, Betic Cordilleras.

Geocactea, 30 (2001), 51-54
ISSN:0213683X

Introducción

En el sector occidental de las Zonas internas de las Cordilleras Béticas afloran varios macizos de rocas ultramáficas, conocidos genéricamente como Peridotitas de la Serranía de Ronda (Málaga, España). En conjunto cubren un área de unos 450 km², repartidos mayoritariamente entre los macizos de Sierra Bermeja, Sierra Alpujárride, Carratraca (con la Sierra de Las Aguas al norte y la Sierra de La Robla al sur, Fig. 1) y Mijas. Corresponden a fragmentos del manto subcontinental exhumados, en estado sólido, hasta la superficie terrestre (Nicolás y Jackson 1972). Las peridotitas están situadas en la base del Manto de Los Reales, correspondiente a la unidad alúctica superior del Complejo Alpujárride de las Cordilleras Béticas. (Navarro-Vilá y Tubía, 1983).

Los trabajos sobre las serpentinitas de los macizos ultramáficos de Ronda son escasos. Es posible que ello se deba a que las peridotitas de Ronda forman el mayor conjunto de lherzolitas orogénicas del mundo, y a que son las únicas donde están presentes las tres facies metamórficas de O'Hara para rocas ultramáficas representativas del manto litosférico (Obata, 1980). Estas circunstancias podrían explicar la polarización de muchos estudios hacia las etapas precoces de su exhumación desde la astenosfera hasta niveles corticales profundos, en detrimento del análisis de su comportamiento en las condiciones más superficiales que precisan los procesos de serpentinización.

Esta nota presenta las características petrográficas de rodingites con pectolita en los macizos de Carratraca. La presencia de pectolita habida sido señalada previamente por Dickeys y Obata (1974) en diques de corneanitas graftositas intrusivas en las peridotitas de Sierra Bermeja. Sin embargo, estos autores no proporcionan ningún dato sobre su posible significado, limitándose a comentar que la pectolita forma venillas de menos de 0,5 mm de espesor junto con albita y cuarzo. Además de discutir el posible origen de la pectolita, el interés de nuestro trabajo reside en que proporciona la primera referencia sobre la presencia de rodingitas en las Peridotitas de Ronda.

Condiciones de afloramiento

Las peridotitas de Ronda están compuestas principalmente por lherzolitas con cantidades menores de dunitas y capas máficas (Hernández-Puebro 1967).

En Sierra Bermeja, Obata (1980) reconoció la existencia de una zonación petrográfica caracterizada por la presencia de peridotitas con plagioclases en la parte inferior, peridotitas con espinela en la intermedia y peridotitas con granate en la parte superior. En los macizos de Carratraca la zonación es incompleta, ya que sólo afloran peridotitas con granate en el techo de los macizos, junto a las kinzigitas del Manto de Los Reales, y peridotitas con espinela por debajo.

Las rodingitas con pectolita están repartidas por los dos macizos ultramáficos de Carratraca; siempre aparecen asociadas con los diques graníticos que tan abundantes son en las sierras de La Robla y de Las Aguas, intruyendo tanto en las peridotitas con granate como en las peridotitas con espinela. Los ejemplos que describimos proceden del excelente corte que, con dirección N-S, proporciona el talud de la carretera A-357 (Málaga-Campillos) en su intersección con el contacto metadonal del macizo de la Sierra de Las Aguas, unos 4 km al sur de Carratraca (Fig. 1). Desde el punto de vista estructural, dicho contacto, que actúalmente muestra un buzeamiento de unos 40° hacia el SE, corresponde a una falla ex-tensional plegada, la falla de Cerro Tajo,
con movimiento del bloque de techo hacia el norte (Argles et al., 1999). La falla omite la franja de kinzigitas del Manto de Los Reales, poniendo en contacto peridotitas con espinela de texturas porfiroclásticas y migmatitas brechificadas (Fig. 1).

La figura 2 sintetiza las características litológicas y estructurales del corte geológico del que proceden las muestras estudiadas. La intensidad de la serpentinización y el grado de fracturación de las peridotitas disminuyen al alejarse del contacto con las migmatitas suprayacentes. Junto a las migmatitas se ha desarrollado un delgado nivel (5-30 cm) de harinas de falla a partir de serpentinitas. Por debajo hay una franja (4-5 m) de serpentinitas cloritizadas con tectonitas S-C que dan paso, finalmente, a peridotitas parcialmente serpentinizadas fragmentadas por varios sistemas de diaclasas. Son éstas últimas peridotitas las que contienen numerosos diques graníticos con asociaciones minerales rodingíticas (Fig. 2). Los diques son oblicuos a la foliación de las peridotitas, y tienen direcciones variables. Predominan los de buzamiento hacia el sur, aunque en ocasiones forman enjambres de diques anastomosados, que se propagan a través de las sistemas de diaclasas precursoras de la serpentinización de las peridotitas. La potencia de los diques oscila entre 2 cm y medio metro. En los de mayor espesor se aprecia una foliación, definida por cristales de biotita, paralela a los diques y diaclasas de extensión perpendiculares colmatadas por agregados fibrosos de pectolita reconocible a simple vista. Los contactos de los diques con las rocas ultramáficas son netos, y en algunos casos se observa un enriquecimiento en biotita a lo largo de los bordes de los diques.

Características petrográficas y composiciones minerales

Los diques graníticos menos rodingitized tienen texturas hidrotérmicas equigranulares, y están compuestos por plagoclase, cordierita, biotita, y cuarzo como minerales mayoritarios. La cordierita presenta hábitos idiomorfos, y habitualmente conlleva inclusiones de minerales opacos, agujas de sillimanita prismática, biotita, cuarzo y circón. Las plagoclases tienen texturas subhidrotérmicas y están zonadas, variando su composición desde bitotwin a andesina, de centro a borde. Ambos minerales están inmersos en una matriz de grano fino, formada por agregados de biotita y cuarzo recristalizado. Los cristales de biotita presentan grados de cristalización apreciables. Entre los minerales accesores destacan por su abundancia el gráfico. Los diques del corte estudiado no contienen feldespato potásico ni turmalina, sin embargo ambos minerales llegan a ser fases mayoritarias en otros diques del macizo de la Sierra de las Aguas.

Las asociaciones minerales de naturaleza rodingítica que hemos detectado están integradas mayoritariamente por
clorita, hidrogrosularia, prehnita y xonotilita; circinos, biotita, plagioclase y cordierita aparecen como minerales relictos procedentes de los protolitos graníticos. La caracterización de estos minerales se ha realizado por métodos ópticos, difracción de rayos X, y análisis de microsonda. La tabla 1 recoge las composiciones químicas de los minerales más representativos de las rodingitas. La hidrogrosularia está englobada frecuentemente dentro de cristales tabulares de clorita, formándose coronas reaccionales entre los dos minerales (Fig. 3A). La hidrogrosularia y la clorita tienden a concentrarse cerca de los contactos entre los diques y las serpentina. La prehnita aparece en forma de agregados fibrosos-rectangulares cañón (Fig. 3B). La xonotilita crece como agregados fibrosos-rectangulares, y llega a formar venas que penetran en las serpentina (Fig. 3D). Las rocas con estas asociaciones minerales contienen además pectolita (Fig. 3C), un inesilicato rico en calcio y en sodio, disperso entre el resto de minerales o formando venas, de hasta 2cm de espesor, perpendiculares a los diques.

Como hemos comentado previamente, el avance de la serpentinización es muy desigual, de manera que en el corte estudiado hay peridotitas parcialmente serpentinizadas, en las que aún se reconocen texturas porfiroclásticas, al lado de serpentina más masivas. Las serpentina más comunes están compuestas por agregados desorientados de jaidita con texturas de tipo "mesh", formadas por bordes de serpentina α- que engloban núcleos de olivina, de bastitas δ+ o de serpofitas (Lodochnikov, 1933).

Origen de las rodingitas en las Peridotitas de Ronda

Las rodingitas son rocas ricas en calcio y subsaturadas en sílice, que se forman por metasomatismo cálido a partir de distintos tipos de rocas que contactan con peridotitas. Existen rodingitas procedentes de la transformación de gabros (Bloxam et al., 1954), granitos (Wares et al., 1980), lamprofidos (Schandl et al., 1989) o pegmatitas (Jelito et al., 1993). La variedad composicional de los posibles protolitos explica la diversidad mineralógica de las rodingitas, que no obstante, siempre contienen síliticos de Ca-Al, de Ca-Mg o de Mg (O'Hanley, 1996). Una característica importante de la rodingitización es que se trata de un proceso contemporáneo de la serpentinización de las peridotitas (Rice, 1983; Mittweude y Schandl, 1992; O'Hanley, 1996), lo que restringe su activación a temperaturas inferiores a 500°C.

La asociación serpentina más detectada en los diques neocordiíticos de la falla de Cerro Tajo (Fig. 2) sugieren que los protolitos graníticos han sufrido un proceso de enriquecimiento en Ca y subsaturación en SiO₂. Eso seguiría a la consecuencia esencial de la rodingitización. La adición de Ca procedería de la oxidación de las peridotitas adyacentes, ya que debido a su imposibilidad para acomodarse en la estructura cristalina de las serpentina, tendendaría a concentrarse en los fluidos liberados durante el proceso de serpentinización y a entrar en los materiales en curso de rodingitización (Schandl et al., 1990). La clorita que jala los contactos entre las serpentinitas y los diques requiere a su vez la incorporación de Fe y Mg, elementos que proceden probablemente de la descomposición de la biotita y la cordierita presentes en los protolitos graníticos.

La formación de pectolita autógena rellenando vacíos de basaltos picroíticos (Bente et al., 1991) o en venas de brechas olivariolíticas (Craw et al., 1980, 1995) ha sido adscrita a condiciones superficiales. También se ha descrito pectolita asociada a procesos metasomáticos en condiciones de las facies prehnita-pumpellita, en contactos de sienites (Grice et al., 1997), dentro de enclaves graníticos en intrusiones siñtico-epíptácticas (Arzamastsev et al., 2000) y en peridotitas mióctenas en contacto con pizarra (Franks, 1959).

La presencia de pectolita en las muestras estudiadas es un hecho que merece destacarse, pues se trata de un mineral inusual en las rodingitas. Su formación requiere una etapa de metasomatismo sídico, siendo la fuente más probable de Na las plagioclases de los granitos. El interés de las asociaciones minerales encontradas en las rodingitas de Ronda reside en que a partir de ellas es posible establecer una cronología relativa de los procesos metasomáticos generadores de las rodingitas. Así, el proceso de rodingitización comenzaría por el metasomatismo cálido, dando lugar a la formación precoz de wollastonita, bajo temperaturas próximas a los 500°C, posteriormente a la asociación de clorita y hidrogrosularia y, finalmente, a prehnita y xonolita. La formación de pectolita y de albita coincide con los últimos estadios del metasomatismo cálido. Por lo que concierne a la evolución correspondiente de los pro-
Fig. 3.- Minerales asociados al proceso de rodigitzación. A) Hidrogranularidades incluidas en cristales de clorita, B) Prehnita fibrosa radial (izquierda) y pectolitas fibrosas (derecha), C) Pectolitas fibrosas, D) Agregados de xonolita orientada y deformada per kink-bands.

Fig. 3.- Representative mineral developed during the rodigitzation process. A) Hydrogrossular crystal enclosed in chlorite, B) Fibrous radial prehnite (left) and fibrous pectolite (right), C) Fibrous pectolite, D) Xonolite aggregates with kink-bands.

cos de serpentinización aún no hemos detectado la presencia de antigorita, la variedad de serpentina de alta temperatu- ra que sería compatible con la existencia de wollastonita en las rodigrítas; sin emba- rgo, este hecho no es de extrañar pues las similitudes composicionales y estructu- rales de los distintos tipos de serpentini- nas favorecen la transformación de anti- gorita en lizardita al descender la tempe- ratura (O’Hanley, 1996).

Agradecimientos

Este trabajo ha sido financiado por el proyecto PB 96-1452-C03-03 del M.E.C. y la Subvención a Grupos de Investigación de la U.P.V./E.H.U., U.P.V. 001-310- G18/99 y corresponde a parte de la Tesis Doctoral que está realizando J.J. Esteban con la ayuda de una Beca de formación de Personal Investigador del Gobierno Vasco.

Referencias