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Test-area deformations are used to analyze vapor-liquid interfaces of Lennard-Jones particles by
molecular dynamics simulation. For planar vapor-liquid interfaces the change in free energy is
captured by the average of the corresponding change in energy, the leading-order contribution. This
is consistent with the commonly used mechanical �pressure-tensor� route for the surface tension. By
contrast for liquid drops, one finds a large second-order contribution associated with fluctuations in
energy. Both the first- and second-order terms make comparable contributions, invalidating the
mechanical relation for the surface tension of small drops. The latter is seen to increase above the
planar value for drop radii of �8 particle diameters, followed by an apparent weak maximum and
slow decay to the planar limit, consistent with a small negative Tolman length. © 2010 American
Institute of Physics. �doi:10.1063/1.3376612�

It is striking that though almost a century has passed
since Gibbs formulated his thermodynamic theory of curved
interfaces, there is still widespread controversy about the de-
pendence of the surface tension on the curvature �size of a
drop� and the validity of the mechanical route to the surface
tension.1–3 The formal approach of Gibbs is intimately con-
nected with the relations of Laplace, �p=2�s /Rs, and Tol-
man, ��R� /��=1−2�� /R+. . ., for drops of radius R. Here,
�p= pl− pg is the pressure difference inside �l� and outside
�g� the drop, �s=��Rs� is the interfacial tension associated
with the surface of tension Rs, �� is the value for the planar
gas-liquid surface, and the Tolman4 length �� is defined rela-
tive to the radius of the equimolar surface Re as ��

=limRs→��Re−Rs�.
There are three basic routes to the definition of the

tension:1 Thermodynamic �Gibbs and Tolman�, mechanical
�Laplace and Young�, and statistical mechanical �density
functional and related theories�. The thermodynamic and me-
chanical routes are macroscopic theories, so there has been
much debate about their applicability to small systems such
as nanoscale liquid drops or bubbles. One key question is
whether the mechanical relations based on the pressure virial
�formulated in terms of the appropriate tensorial compo-
nents� that make use of the concept of the bulk pressure of
the coexisting states are appropriate at these length scales for
curved surfaces.

While the Laplace equation essentially defines the ratio
�s /Rs, the first-order form of Tolman’s theory is appropriate

only for sufficiently large drops. One can view �� as the
leading-order correction to the tension of a planar surface.
Despite its fundamental role in studies of interfacial proper-
ties of curved surfaces and theories of nucleation, there is
still much controversy as to even the sign of ��. Microscopic
statistical mechanical approaches including square gradient
theories �SGTs�,5,6 curvature expansions of the planar
interface,7,8 and density functional theories �DFTs�, including
local9–11 and nonlocal12–14 treatments, have led to conflicting
views on the magnitude and sign of ��, as well as the cur-
vature dependence of the surface tension. The widely ac-
cepted view from this body of work is that ���0 and that
there is a small maximum in �s�R� as the drop radius is
decreased, then followed by a sharp decrease. This is sup-
ported by studies on the penetrable sphere model15 �which
can be solved exactly at the mean-field level at zero tempera-
ture� where one finds a negative Tolman length ���=−� /2�,
with � the molecular diameter.

By contrast, the vast majority of computer simulation
studies suggests that ���0. In most simulations of liquid
drops, the mechanical route to the interfacial tension is em-
ployed, usually involving an integration of the gradient of
the normal component of the pressure tensor from the center
of the drop to the bulk vapor phase.16–19 In this case one
predicts a monotonous decrease in the surface tension with
increasing curvature �decreasing drop radius� from the planar
limit �infinite radius�; this would correspond to ���0
throughout. As was pointed out early on by Schofield and
Henderson,2 there are fundamental problems in employing
local pressure tensors and the associated definition of the
internal pressure for microscopic �high curvature� drops.

a�Author to whom correspondence should be addressed. Electronic mail:
g.jackson@imperial.ac.uk.

THE JOURNAL OF CHEMICAL PHYSICS 132, 141101 �2010�

0021-9606/2010/132�14�/141101/4/$30.00 © 2010 American Institute of Physics132, 141101-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

150.214.168.144 On: Thu, 20 Nov 2014 17:09:54

http://dx.doi.org/10.1063/1.3376612
http://dx.doi.org/10.1063/1.3376612
http://dx.doi.org/10.1063/1.3376612
http://dx.doi.org/10.1063/1.3376612


This leads to a mismatch in the free energy of the formation
of a drop determined via the mechanical and thermodynamic
routes as observed in simulation.20 Macroscopic thermody-
namic routes based on a combination of the Laplace and
Tolman relations have been employed16 but also suffer from
the ill-definition of the internal pressure and density of the
liquid. One can estimate the interfacial tension from the free
energy change accompanying a volume deformation of
spherical surfaces using a virial-like expression;21 these re-
sults for the surface tension are in disagreement with those
obtained from the direct mechanical route. Recent grand ca-
nonical simulations22 and a thermodynamic analysis of large
drops based on the Laplace–Tolman relations23 both now ap-
pear to suggest a small negative ��, which is consistent with
the findings of DFT.

The aim of this paper is to use a new method for the
calculation of the surface tension of small liquid drops in
molecular simulation, highlighting the role played by the
fluctuations in the energy of deformation. The method relies
on the thermodynamic definition of the surface tension and is
thus free from the inconsistencies associated with the appli-
cation of the mechanical route. A variant of the test-area
�TA� method24 is used where small virtual perturbations are
made in the box dimensions of systems with interfaces to
obtain the change in free energy associated with the corre-
sponding change in surface area. For a fluid drop of radius R,
the change in the Helmholtz free energy F is expressed ther-
modynamically as1

dF = − SdT − pgdVg + pldVl + �dN + �dA + CdR , �1�

where S is the entropy, Vg,l are the vapor and liquid volumes,
T is the temperature, � is the chemical potential, N is the
number of particles, A is the interface area, and C is the
conjugate variable for R. The surface tension of a drop is
given by

� �F

�A
�

NVT

= �s, �2�

where the minimal interfacial tension �s defines Rs and cor-
responds to taking C=0. The change in free energy �F due
to a virtual change in area �A can be expressed as the aver-
age of the Boltzmann factor of the corresponding change in
configurational energy �U,24

�F = − kT ln�exp�−
�U

kT
�	 �3�

=
�U� −
1

2kT
�
�U2� − 
�U�2


+
1

6�kT�2 �
�U3� − 3
�U2�
�U� + 2
�U�3
 . �4�

The averages are over configurations of the unperturbed ref-
erence system. In Eq. �4� �F is expressed as a perturbation
series to O�
�U3��, where the first-order average of the
change in energy is �F1= 
�U�, the second-order energy
fluctuation term is �F2=−�
�U2�− 
�U�2
 / �2kT�, and the
third-order contribution is denoted by �F3. The full Boltz-

mann form, Eq. �3�, is employed in, e.g., the test-particle
approach for the chemical potential,25 or the volume pertur-
bation method for the pressure26 and the pressure tensor.27

The tension is obtained as the change in free energy per
unit area for infinitesimal perturbations to O�
�U3��,

� = lim
�A→0

�F

�A
= lim

�A→0
��F1

�A
+

�F2

�A
+

�F3

�A
� . �5�

The leading term, �F1= 
�U�, corresponds to the mechanical
work involved in changing the area of the interface, which
can be directly associated with the so-called virial expression
for the tension28 �expressed in terms of averages of the ap-
propriate components 	 of the virial, 
x	�dU /dx	��, at the
Hookean linear-response level�. The corresponding entropic
contribution due to the deformation is28 T�S= �
U�
�U�
− 
U�U�
 / �kT�.

In the case of a planar interface, it is well known that the
interfacial tension can be obtained formally from the virial
expression,1,28 i.e., entirely from the leading-order contribu-
tion of Eq. �5�. This is exemplified for a planar vapor-liquid
interface of Lennard-Jones �LJ� particles �of diameter � and
well depth 
, truncated and shifted TS at rc=2.5�� as shown
in Fig. 1. A planar interface is first stabilized during an NVT
molecular dynamics �MD� simulation of the inhomogeneous
system with a liquid slab in the center of a box

FIG. 1. TA deformations of a planar liquid-vapor interface of the LJ-TS
fluid. MD simulations of N=749 particles in a periodic box of dimensions
Lx=Ly =7.885� and Lz=6Lx at T�=kT /
=0.8 over 3�106 timesteps. The
deformations correspond to changes in the box dimensions �particle coordi-
nates� of Lx�=Lx

�1+�, Ly�=Ly
�1+�, and Lz�=Lz / �1+��. �a� The contributions

�F1 /�A and �F2 /�A to the change in free energy per unit area �in units of

 /�2� ��A�
0, +; �A��0, �; and average, ��. The interfacial tension
��=��2 /
 is obtained by extrapolation to �A�=�A /�2=0. �b� The distribu-
tion P��U� of the change in energy �relative to its average in units of 
�
scaled at the maximum peak height for different relative deformations �A�.
The width �standard deviation, ��U� is depicted in the inset.

141101-2 Sampayo et al. J. Chem. Phys. 132, 141101 �2010�
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separated by two vapor regions. The change in configura-
tional energy due to small test changes in the dimensions of
the box such that the interfacial area is increased or de-
creased at fixed overall volume is then computed to estimate
the various contributions in Eq. �5�; the limit of infinitesimal
deformations is obtained by extrapolation to �A→0. From
Fig. 1�a� it is clear that only the leading mechanical term
�F1 /�A contributes to the interfacial tension of a planar
interface, confirming the validity of the pressure-tensor route
in this case. The fluctuation term �F2 /�A is very small by
comparison and does not contribute to the tension in an ap-
preciable way; this is also true for the third-order term. In
Fig. 1�b� we plot the distribution P��U� of the change in
configurational energy �relative to 
�U�� for different area
perturbations; the distribution is well represented by a
Gaussian, the width of which ���U� decreases to zero
with �A→0, consistent with a very small �F2 /�A
�1�10−6
 /�2.

The overall physical picture is fundamentally different
for a nanosized spherical drop of liquid in contact with its
vapor. Once the drop has been stabilized, its size can be
characterized from the density profile ��r� as a function of
the distance r from its center by calculating the Gibbs divid-
ing surface Re

3= ��v−�l�−1�drr3d��r� /dr, corresponding to an
area of A=4�Re

2. Virtual perturbations from the equilibrium
spherical drop geometry are made with test changes in the

dimensions of the simulation cube: Two of the Cartesian axes
are decreased �or increased� in length, and the third is in-
creased �or decreased� such that the overall volume remains
constant. The perturbed states correspond to ellipsoidal drops
of prolate �or oblate� shape, which always have larger sur-
face areas than the original drop, �A�0. This essentially
corresponds to the longest P2 �Legendre polynomial�
capillary-wave oscillations possible for the drop;3 the
capillary-wave surface tension is equivalent to the thermody-
namic one at least to leading order in curvature O�1 /R�.
Averages are then accumulated over very long runs of
�1.5�109 timesteps, corresponding to microsecond runs for
typical molecular parameters. The term �F1 /�A is more
than two orders of magnitude larger in the case of the drop
than for the planar interface system of comparable size �cf.
Figs 1�a� and 2�a��. The most significant difference is the
large contribution from the second-order energy “fluctua-
tion” term �F2 /�A for the drop, which was negligible for
the planar interface; this term is now comparable in magni-
tude to, but of opposite sign than, the first-order term. The
third-order terms remain essentially negligible. As a result,
both the first- and second-order terms contribute to the sur-
face tension of the drop. A thermodynamic characteristic of
the drop is thus the nonvanishing �and large� fluctuation
term, which is clearly an indication of an additional entropic
contribution. This can be seen in the distribution of the
change in configurational energy for different TA perturba-
tions �Fig. 2�b��. The data are again well described as Gaus-
sians, but though the width now appears not to vanish in the
limit �A→0 its variance of course does, i.e., lim�A→0 ��U

2

=0 and where in this case lim�A→0 �F2 /�A�0. The fact
that lim�A→0 �F3�0 for both the planar and curved systems
suggests symmetrical Gaussians.

The dependence of the surface tension computed from
ellipsoidal deformations as a function of the drop size �for
systems with N=749 to 11 334� is depicted in Fig. 3. Here
the tension is computed for Re rather than Rs though �e=�s

to O�1 /R2�. The behavior obtained with our thermodynamic
TA approach does not support the findings obtained from a
standard pressure-tensor route �e.g., the recent MD data of

FIG. 2. TA ellipsoidal deformations of a spherical drop of LJ-TS liquid of
radius 
Re�=5.55� in coexistence with its vapor. MD simulations of N
=749 particles in a periodic box of dimensions Lx=Ly =Lz=20� at T�=0.8
over 1.5�109 timesteps. The deformations correspond to changes in the box
dimensions �particle coordinates� of Li�=Li

�1+�, Lj�=Lj
�1+�, and Lk�

=Lk / �1+�� �where i, j, and k denote any of the Cartesian axes�. �a� The
contributions �F1 /�A, �F2 /�A, and �F3 /�A to the change in free energy
per unit area �in units of 
 /�2� �prolate, +; oblate, �; and average, ��. The
tension ��=��2 /
 is obtained by extrapolation to �A�=�A /�2=0. �b� The
distribution P��U� of the change in energy scaled at the maximum peak
height for different relative deformations �A�; the width ��U is depicted in
the inset. The Gaussians for the planar interface are shown dotted �note the
very small scale in comparison�.

FIG. 3. The surface tension of spherical drops of LJ-TS fluids with average
radii 
Re /��=5.55, 6.12, 8.04, 11.7, and 14.6 at T�=0.8 from TA ellipsoidal
deformations ���, compared with the values from the mechanical route
�Ref. 19� ���, and the data of Thomson et al. �Ref. 16� ���, El Bardouni
et al. �Ref. 21� ���, and Schrader et al. �Ref. 22� �continuous curve�; the
planar limit is shown dotted. The predictions of FMT �Ref. 14� are depicted
in the inset �dashed curve�.

141101-3 Role of fluctuations in nanoscale drops J. Chem. Phys. 132, 141101 �2010�
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Vrabec et al.19�. This is in line with the concerns of Schofield
and Henderson,2 and others8,20,29 about the inadequacy of the
mechanical route for very small systems. For drops larger
than Re�8 we observe values of the surface tension which
appear to be slightly larger than the planar limit, ��R����;
because the tension has to converge to �� when R→�, this
suggests a nonmonotonic behavior of the tension with in-
creasing curvature and a corresponding weak maximum. Our
values are consistent with the data point reported by El Bar-
douni et al.21 estimated from the surface free energy change
and with the small maximum observed by Schrader et al.22

using a Landau free energy approach in the canonical en-
semble �though the authors do not comment explicitly on this
point�. The calculations of the tension of curved interfaces
from curvature corrections, SGT, and DFT �which have been
brought into question because of their failure to reproduce
existing simulation data� are now supported by our data. In
the inset of Fig. 3 we compare the TA data for the surface
tension of drops with those from a nonlocal DFT using fun-
damental measure theory �FMT� ;14 a maximum is predicted
with FMT at Re�10.

Three main conclusions can be gleaned from our study.
First, there is clearly a large fluctuation contribution to the
interfacial tension of nanoscale spherical drops �and most
likely other curved surfaces� in addition to the underlying
first-order �mechanical� contribution, which fully describes
the planar interface. Such contributions from fluctuations in
the energy are not found in the planar limit to any significant
degree �at least for the conditions examined here away from
the cricial region�. Second, our results do not therefore sup-
port the validity of a mechanical �pressure-tensor� route to
the interfacial tension for surfaces of high curvature such as
small drops. This is in line with the warning of Blokhuis and
Bedeaux8 that the use of a mechanical approach in this con-
text “is still a matter of concern” and that it is “advisable not
to use the pressure-tensor whenever this can be avoided.”
Our data are not consistent with the monotonic dependence
of the surface tension with curvature obtained from a me-
chanical treatment. As well as contributions in 
x	�dU /dx	��,
the correct “virial” expression for the surface tension would
have to contain terms in averages of the type 
x	�dU /dx	��
�
x��dU /dx��� and 
x	x��dU /dx	��dU /dx���, which would
involve up to four-body correlations for pairwise additive
potentials. This suggests that there are additional contribu-
tions to the change in the entropy due to the deformation of
small drops involving quadratic terms in �U: 
�U2�, 
�U�2,

U�U2�, 
�U�
U�U�, 
U�
�U2�, and 
U�
�U�2. As a final
point, the rise in the surface tension above that of the planar
limit after a certain drop size would be consistent with a
negative Tolman length. Our data for the larger drops suggest
a value of �� /��−0.2�0.3. Though the statistical uncer-

tainty is large, our finding supports the exact mean-field pre-
dictions for the penetrable sphere model15 and is consistent
with the latest accurate value of −0.10�0.02 determined
from the Laplace relation for a large N=100 000 particle
system.23

We are very appreciative to Jim Henderson for useful
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