Geocronología U/Pb del volcanismo ácido y granitoides de la Faja Pirítica Ibérica (Zona Surportuguesa)

U/Pb dating of acid volcanism and granitoids in the Iberian Pyrite Belt (South Portuguese Zone)

G.R. Dunning (1), A. Díez Montes (2), J. Matas (3), L.M. Martín Parra (4), J. Almarza (5) and M. Donaire (6)

(1) Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B3Z5, Canada
(2) Instituto Geológico y Minero de España, Avda. República Argentina, nº 30, 28044-León
(3) Instituto Geológico y Minero de España, C/ Rios Rosas, nº 23, 28003-Madrid
(4) Consejería de Empleo y Desarrollo Tecnológico. Junta de Andalucía

ABSTRACT

Three samples have been analyzed, two of them belong to the volcanic ones from the IPB and a third to the rocks plutonics of the BSN. The age belonging to the granitoid of Campóbio is of 354.4 ± 5.4 m.y. The ages obtained for the volcanic materials are of 347.5 ± 1.5 m.y. for the sample of Zufré and of 353 ± 2 m.y. for the rhyolites of the SE of Nerva. Being based on the scales of the geological time, this interval of ages correspond to the Tournaisian, and moreover, suggests that the intrusion of the Sierra Norte and Baja batholiths happen at the same time. These ages also coincide with the ages obtained for the main event of the volcanism that the IPB generates. Therefore, you can conclude that both types of rocks (volcanics and plutonics) they were formed at the same time.

Key words: Iberian Pyrite Belt, South Portuguese Zone, volcanism, plutonism, U-Pb dating, zircon.

Geocaceta, 32 (2002), 127-130
ISSN:0213683X

Introducción

Durante los años 1997 a 1999 se ha realizado una cartografía a escala 1:25.000 de todo el sector español de la Faja Pirítica Ibérica (FPI), para la Junta de Andalucía. Este trabajo ha estado apoyado con diversos estudios de detalle, siendo uno de ellos el estudio geocronológico mediante la datación U/Pb en circones, con un total de 9 daciones absolutas, repartidas por toda la FPI. En este trabajo presentan los resultados de tres de las muestras recogidas durante la realización de dicho proyecto.

La FPI es una de las mayores provincias metalogenéticas del Mundo, así puede llegar a contabilizarse más de 80 depósitos de sulfuros masivos polimetálicos y más de 300 indicios de manganoso. Ocupa una banda arqueada, con 250 Km de largo por 25 a 70 kilómetros de ancho, en dirección aproximadamente E-O. Comprende materiales sedimentarios e igneos de edad Devónico a Carbonífero Superior, hacia el E se encuentra el Batolito de la Sierra Norte (BSN) y al N la Zona de Ossa-Morena (ZOM).

Marco Geológico y geocronología previa

La FPI forma parte de la Zona Surportuguesa (ZSP) (Fig. 1), que es la unidad meridional en las que Lotze (1945) dividió el Macizo Ibérico y que posteriormente fue mejor definido por Jullier et al. (1972) y Oliveira (1970).

A escala regional, la secuencia litostatigrafía dentro de la FPI se reduce a las secuencias devono-carboníferas más recientes. No hay datos sobre la estratigrafía durante el Paleozoico inferior, si bien, en la zona oriental (Fig. 1) se ha diferenciado cartográficamente una serie de afloramientos, Fm. La Minilla, formados por rocas polimetálicas y que son correlacionables litológicamente con las series cadomianes (Serie Negra) de la ZOM, estos materiales fueron denominados inicialmente por Simancas (1983) como Fm. El Ronquillo.

Las tres formaciones litológicas que clásicamente se diferencian son por orden cronológico y de muro a techo las siguientes: Grupo Pelítico Cuarcítico (GPQ) que representaría una secuencia preorogénica dentro de una plataforma continental somera; el Complejo Volcanono-Sedimentario (CVS) y el Grupo Culm (GC) como secuencia sinorogénica. Hacia el Este afloran las rocas plutónicas del Batolito de la Sierra Norte (BSN) y el relleño de la Cuenca Esteano-Pértinca del Viar.

El GPQ se caracteriza por una monótona alternancia de metarenáceas y pizarras. El color varía de verde grisáceo a gris oscuro, en razón del mayor contenido de materia orgánica o de carbonato en las paquetes grises. En los tramos superiores del GPQ, se intercalan cuerpos de espesor métrico y extensión lateral hectométrica a kilométrica constituidos por cuarcocretíceos de grano grueso y afloramientos de carbonatos de menor extensión y gran variabilidad en su composición litológica, desde packstone bioclásticas con tonos grises, a mudstone laminadas de color marrón oscuro. A techo de esta sucesión se encuentra un nivel de pizarras negras datadas como Estruriense (Rodríguez et al., este volumen).

Sobre el GPQ se dispone de forma concordante un conjunto litológico volcanosedimentario integrado básicamente por pizarras negras, rocas volcanosedimentarias y por distintas uni-
Fig. 1.- Mapa geológico de la Zona Surportuguesa (Modificado a partir de Oliveira, 1999)

Por el S, la FPI cabalga al Dominio del Flysch del Bajo Alentejo.

La estructuración tectónica interna de la FPI es la de un imbricado de láminas cabalgantes con vergencia hacia el S, con desarrollo de corredores de cizallas de carácter dúctil a dúctil-frágil, que en su sector septentrional llegan a generar milonitas de bajo a muy bajo grado metamórfico y muestran una componente principal de desgarre con movimiento inverso hacia el Sur.

En grandes líneas, la FPI se puede dividir en dos grandes sectores desde el punto de vista estructural. El límite entre el sector septentrional de la FPI, con predominio de las zonas de cizalla con componente principal de desgarre y desarrollo de milonitas, y el sector meridional de la misma, podría situarse en un ancho corredor de cizalla que discurre al N de la localidad de Calafas. Los dos sectores son más o menos equivalentes al Dominio Norte o de Riotinto y al Dominio Sur de Tharsis de Leistel et al. (1998).

Los últimos trabajos geocronológicos realizados en zonas limítrofes se centran principalmente en las rocas plutónicas. Así, De la Rosa et al. (1999) dan la granodiorita de Gil Márquez y obtienen una edad de 353 ± 14 Ma, edad que es ligeramente más antigua que la propuesta por Kramm et al. (1991) (328 ± 2 Ma), para la misma roca. Pin et al. (1999) recogen muestras en el batolito de Beja, en las localidades de Serpa y Torrao, que son estudiadas por el método de U/Pb en circones y obtienen unas edades de 350 ± 4 Ma y 352 ± 4 Ma, respectivamente. Estas edades son interpretadas como las edades de emplazamiento de las rocas igneas de este batolito.

Por lo que respecta a las rocas metamórficas pertenecientes a los aflora-
El contenido en biotita es muy variable de unos puntos a otros, incluso dentro de un mismo afloramiento. Puede presentarse en cristales aislados (1-3 mm), fina, con secciones hexagonales o bien en pequeños agregados.

La plagioclasa se presenta en cristales subidiomorfas a idiomorfas, de 2-4 mm; cuando la roca presenta cierto grado de alteración, puede observarse muy bien la textura plagioclasa, donde los cristales de plagioclasa resaltan por su color blanquecino. De forma puntual, hay cristales de plagioclasa con formas tabulares que pueden llegar a tener hasta 7 mm de largo.

Resultados U/Pb

Los análisis se han realizado sobre circones euhelrales de alta calidad. Estos circones tienen un componente de circones más antiguos heredados, no visibles al microscopio, que es común en rocas felsicas producidas por fusión cortical.

Estos análisis fueron seguidos por una selección de nuevas fracciones de un pequeño número de circones euhelrales aciculares para su análisis. Esta morfología de los circones es improbable que contengan núcleos heredados y en este trabajo son los cristales analizados y utilizados para resolver la edad de cristalización de la roca (Fig. 2).

Muestra AD-9023: cuatro fracciones de circones claramente euhelrales fueron analizadas en esta muestra y la primera fracción, con los cristales más grandes, contiene la mayor proporción de herencia más antigua. Dos nuevos análisis (Z3, Z4) producen una concordancia y ofrecen una edad de cristalización de 347.5 ± 1.5 Ma.

Muestra AD-9027: en esta muestra fueron analizadas cuatro fracciones de circones euhelrales. Z1 y Z2 con mayor porcentaje de grandes circones en la muestra, se desplazan a la derecha de la concordia claramente contienen un componente más viejo heredado. Dos análisis subsecuentes (Z3, Z4), de circones más pequeños y con formas aciculares, son ambos concordantes y dan una edad de 353 ± 2 Ma para esta roca.

Muestra AD-9028: como con las dos muestras anteriores, los primeros análisis de los circones euhelrales de mayor tamaño de esta roca, contienen una componente heredada de circones más antiguos. Nuevos análisis de circones claramente aciculares, proporcionaron datos con edades 30Pb/206Pb entre 354-348 Ma y con
una discordia creciente, un modelo normal debido a la pérdida de plomo de los granos. Juntas estas cuatro fracciones, dan una edad de cristalización ígnea de 354,4 ±5/-4 Ma.

Conclusiones

Las conclusiones que se deducen del estudio de estas muestras se pueden resumir en los siguientes puntos:

1/ La edad de la muestra tomada en el granitoide de Campofrío, perteneciente al Batolito de la Sierra Norte, es de 354,4 ±5/-4 Ma.

2/ Las edades obtenidas para los materiales volcánicos son de 347,5 ± 1,5 Ma para la muestra de Zafra y de 353 ± 2 Ma para las riolitas del SE de Nerva.

3/ Basándose en las escalas de tiempo geológico (IUGS, 2000), las edades obtenidas corresponden al Turnaisiense, poniéndose de manifiesto, que la intrusión de los batolitos de la Sierra Norte y Baja ocurren a la vez durante este corto lapso de tiempo, además estas edades coinciden con las edades obtenidas para el principal evento del volcanismo que genera la FPI. Por lo tanto, se puede concluir que ambos tipos de rocas (volcánicas y plutónicas) se formaron al mismo tiempo.

Agradecimientos

El presente trabajo constituye parte de los resultados obtenidos durante la realización de un proyecto para la Junta de Andalucía.

Referencias

Chart. Jürgen Remane (Ed.)

Julivert, M.; Fontbote, J.M.; Ribeiro, A. y Conde, L. (1972): «Mapa tectónico de la Península Ibérica y Baleares». Esca-

la 1:1.000.000. IGME. Memoria ex-

plicativa (1974).

posita*, 33, 82-97.

Min.*, 82, 239-268.