Caracterización de la Turba del Yacimiento de Caspeñas - Fuentes de la Alcarria (Guadalajara, España)

Characterisation of Peat from the Deposit of Caspeñas - Fuentes de la Alcarria (Guadalajara, Spain)

F. Gómez Fernández (1), E. Alonso Herrero (2), A.J. Méndez Cecilia (3) y R. Matías Rodríguez (3)

(1) Área de Prospección e Investigación Minera. Universidad de León. C/ Jesús Rubio 2, 2404 León (España). dimfg@unileon.es
(2) Área de Edafología y Química Agrícola. Dpto. de Ingeniería Agraria. E.S.T.I.A. Universidad de León.
(3) Unión Minera del Norte, S.A. Santa Cruz del Sil. 24494. León.

ABSTRACT

Deposits of peat have been discovered among the materials of the bottom of the river Uñgría Valley (Guadalajara). These deposits are extended, at least, from Caspeñas to Fuentes de Alcarria villages. So far 23 research drill holes have cut layers of up to 7.1 metre-thick of peat with economic interest. Sampling and analysis of 5 stretches of the wells have allowed the characterization of the peat deposit. The peat is eutrophic, characteristic of low or valley peat deposits, and calcareous zones.

Key words: Peat, Quaternary, Tajo Basin.

Geogaceta, 35 (2004), 111-114
ISSN:0213683X

Introducción

La zona de estudio se sitúa unos 15 km al noroeste de la ciudad de Guadalajara, entre las localizaciones de Caspeñas y Fuentes de La Alcarria (Fig. 1). En ella afloran sedimentos miocenos cubiertos parcialmente por depósitos cuaternarios.

La serie miocena caracteriza el tránsito entre las fácies de borde y de centro de la Cuencas del Tajo. De muro techo (Pérez González, 1982; Aznar et al., 1990), es la siguiente:

- Unidad de Tendilla-Brihuega (Orleaniense-Astaiaciense). Constituida por lutitas y margas pardo-rojizas (algunos conglomerados, areniscas, calizas y yessos), alternando con niveles de calizas de hasta 30 640 m. de espesor. Aflora en las laderas del valle del río Uñgría.

- Calizas de los Páramos (Vallesiense-Turolense). Biomictitas y biomicritas oncolíticas de origen lacustre. Sobre esta unidad se desarrolla una superficie de erosión-acumulación, que da lugar a gran parte de las aliplanicies más elevadas del Páramo de La Alcarria y que constituye el rasgo morfológico dominante de la zona.

- Calizas de los Páramos (Vallesiense-Turolense). Biomictitas y biomicritas oncolíticas de origen lacustre. Sobre esta unidad se desarrolla una superficie de erosión-acumulación, que da lugar a gran parte de las aliplanicies más elevadas del Páramo de La Alcarria y que constituye el rasgo morfológico dominante de la zona.

- Calizas de los Páramos (Vallesiense-Turolense). Biomictitas y biomicritas oncolíticas de origen lacustre. Sobre esta unidad se desarrolla una superficie de erosión-acumulación, que da lugar a gran parte de las aliplanicies más elevadas del Páramo de La Alcarria y que constituye el rasgo morfológico dominante de la zona.

Los depósitos cuaternarios son de naturaleza variada. Los más frecuentes son depósitos de llanura aluvial y de fondo de valle, que rellenan los estrechos y profusamente encajonados valles que rompen la aliplanicie del Páramo de La Alcarria (Fig. 3A). En algunos de estos fondos de valle, especialmente en el valle del río Uñgría, se han encontrado los lechos de turbas, que son el objeto de estudio del presente trabajo. Otros sedimentos cuaternarios presentes son conos aluviales, conos de derrame depositados sobre los fondos de valle y rellenos del fondo de uvas y dolinas desarrolladas sobre sedimentos carbonatados miocenos.

Los sedimentos miocenos se dispone subhORIZONTALMENTE, con una pendiente general del orden del 0,3-0,4% hacia el sudoeste (similar a la de los ríos actuales), al tiempo que muestran plegues muy suaves con ejes en dirección NE-SO.
Fig. 1.- Mapa Geológico y de situación de muestras. Modificado a partir de Aznar et al. (1990).

(Soil Survey Staff, 1998). Presenta restos vegetales de dos tipos (Fig. 3B). Los primeros son alargados (su longitud puede superar el decímetro) y aplastados, rubios y con estructura vegetal manifiesta de diferentes especies de Carex y de Gramíneas. Los segundos, de tamaño inferior a los primeros y dispuestos a modo de matriz, son oscuros a negros.

b) Turba con frecuentes intercalaciones de margocalizas (margas con pequeños clastos calizos angulosos) blanquecinas, deleznales. La roca (Fig. 3C) tiene una estructura bandeadá (con restos vegetales dispuestos horizontalmente), cortada ocasionalmente por restos vegetales en posición de vida (verticales). La composición dominante de los restos vegetales es tipo fibríst (Soil Survey Staff, 1998).

- hasta 3'30 m. reconocidos de arcillas y margas grises, ocasionalmente con clastos de caliza y restos vegetales muy dispersos.
- hasta 3'70 m. reconocidos de arcillas y margas grises, ocasionalmente con clastos de caliza y restos vegetales muy dispersos.

El nivel freático se cortó a profundidades variables, entre 0'50 y 2'10 m.

Génesis del yacimiento

El yacimiento de turba se sitúa en la zona alta del río Ungría. Es una turbera intrazonal, dependiente de la geomorfología y litología de la roca del entorno.

Con posterioridad a una etapa de fuerte erosión de los materiales micocenos, en la que tuvo lugar el encajonamiento del río Ungría, aconteció una etapa de estabilidad, en la que se desarrollaron zonas emparadas a lo largo del curso de este río, formándose turberas sobre sedimentos margosos y arcillosos con ocasionales clastos de caliza. Posteriormente, tuvo lugar el entramiento de las turbas mediante acumulación de materiales fundamentalmente arcillosos y calizos, procedentes en su mayor parte de los escarpes que flanquean el valle.

Si bien los sedimentos del techo y del muro de la turbera son esencialmente impermeables, la turbera siguió siendo alimentada lateralmente a partir de aguas de origen kárstico, que hicieron que se mantuvieran las condiciones idóneas para su conservación.

Vegetación

En general la proporción de fibras es inferior al 33%, por lo que la turba se puede considerar de tipo hemíst, pero existen restos de turba (generalmente dentro de niveles de arcillas o margas) que se encuentran mucho menos descompuestos y en los que se han identificado plantas de los géneros Phragmites, Carex y Cladium, que permiten incluir la turbera en la clase fitosociológica Phragmito-Magnocaricetum, típica de medios eutróficos con el nivel de agua próximo a la superficie del suelo, formado por helicópteros esquistos o docuentes de tallo aparente y a la clase Schoencherio-Caricetem fuscos, que son turberas topográficas y de transición con elevada cobertura y escaso porte, constituida por helicópteros y geófitos higrófitos además de numerosos briófitos.

En las turberas se han identificado restos de gasterópodos, en concreto ejemplares de Physa sp. y pulmonados del tipo Planorbis sp.

Ocasionalmente se ha visto también durante la realización de los pozos de investigación algún tronco de considerable tamaño, lo que nos lleva a suponer que la turbra se formó en parte a base de una vegetación que crecía en el aguac en un medio pantanoso como Phragmites sp., Thysa sp. y Carex sp. y en parte a plantas formadas en las proximidades de esas zonas hidromorfas que en algunos casos pudieron ser árboles, y por correspondencia botánica quizás y salvando el tiempo, a la asociación Arv irtica-Ulmetum minoris, es decir una olmeda basófila.

De cualquier manera es claro que se trata de una turba en la que sus restos vegetales presentan más del 75% de plantas herbáceas y menos de 10% de restos de plantas arbóreas.

Metodología analítica de turbas

Se seleccionaron 5 muestras (Figs. 1 y 2), representativas de las zonas investigadas, para su análisis y caracterización en los laboratorios del Departamento de Química Agrícola de la Universidad Autónoma de Madrid.
Caracterización de turbas

Los ensayos del índice de descomposición de Von Post, realizados en el campo indican que se trata de una turba parcial a altamente descompuesta. Los ensayos granulométricos, representan la distribución de partículas en la muestra, correspondiendo la fracción más fina casi totalmente a materia mineral. El alto contenido de carbonato en las muestras no permite ver con claridad la distribución de fibras. La porosidad de las turbas analizadas es en todos los casos superior al 40%, por lo que no presentan problemas de aireación, mientras que los valores de densidad son algo más altos de lo normal.

Los contenidos en materia orgánica son bajos, estando esto relacionado con el alto contenido en cenizas. Las distribuciones de ácidos húmicos y fúlvicos se pueden considerar valores normales, a pesar de la alta dispersión del contenido en ácidos fúlvicos. Los valores de % de nitrógeno obtenidos en las muestras analizadas están comprendidos entre 1.60 y 2.33. La legislación aplicable en la actualidad para el registro de turbas hace referencia a un contenido máximo de este elemento del 2%. En todas las muestras analizadas la relación C/N es menor de 15. Estos valores se pueden considerar normales dentro del rango característico de este tipo de turbas.

La C.I.C. de las muestras analizadas es media a alta, estando comprendida entre 80 y 150 meq/100 g. En cuanto a la acidez las muestras analizadas se consideran como neutras o básicas (pH 6.78 a 7.17). La conductividad eléctrica de las muestras varía entre 171 y 359 μS/cm, lo que indica valores medios. La conductividad eléctrica refleja el contenido de sales de la solución.

Los valores obtenidos de contenidos en cenizas oscilan entre el 36,38 y 76,22%, por lo que en general se pueden considerar altos. El material mineral influye negativamente sobre las propiedades de la turba al mismo tiempo que elevar considerablemente el precio de esta al tener que transportar este material.

El color de las muestras en pirofosfato no permite la clasificación de las mismas según Soil Survey Staff (1998), debido a las coloraciones blanquecinas de los aportes de carbonato cálcico.

Las muestras analizadas tienen contenidos altos en CaCO₃, comprendidos entre 9 y 67%, lo que confiere problemas nutricios que hacen que estas turbas sean inadecuadas para substratos de invernaderos.

Los contenidos en nutrientes obtenidos en los análisis de las muestras están en el rango de la normalidad. El medio es eutrofico y por tanto estos nutrientes son

<table>
<thead>
<tr>
<th>Variable / Muestra</th>
<th>S12-12</th>
<th>S13-12</th>
<th>S14-123</th>
<th>S16-1</th>
<th>S19-123</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Precipitación</td>
<td>1.17</td>
<td>3.33</td>
<td>2.99</td>
<td>4.24</td>
<td>0.69</td>
</tr>
<tr>
<td>ción</td>
<td>1.63</td>
<td>4.17</td>
<td>3.49</td>
<td>3.99</td>
<td>1.72</td>
</tr>
<tr>
<td>grano</td>
<td>0.5-1 mm</td>
<td>1.02</td>
<td>1.71</td>
<td>1.88</td>
<td>2.18</td>
</tr>
<tr>
<td>loamógeno</td>
<td>0.2-0.5 mm</td>
<td>0.77</td>
<td>1.71</td>
<td>1.84</td>
<td>2.17</td>
</tr>
<tr>
<td>partícula</td>
<td>0.1-0.2 mm</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>< 0.01 mm</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Densidad real (g/cm³)</td>
<td>0.12</td>
<td>0.10</td>
<td>0.14</td>
<td>0.25</td>
<td>0.15</td>
</tr>
<tr>
<td>Densidad aparente</td>
<td>0.29</td>
<td>0.30</td>
<td>0.23</td>
<td>0.18</td>
<td>0.41</td>
</tr>
<tr>
<td>% Carbono</td>
<td>0.77</td>
<td>0.71</td>
<td>0.84</td>
<td>0.86</td>
<td>0.73</td>
</tr>
<tr>
<td>% Humedad</td>
<td>55</td>
<td>64</td>
<td>73</td>
<td>78</td>
<td>70</td>
</tr>
<tr>
<td>% Cenizas</td>
<td>76.22</td>
<td>74.38</td>
<td>90.02</td>
<td>95.38</td>
<td>56.82</td>
</tr>
<tr>
<td>Color Fresco</td>
<td>10 YR 2/1</td>
<td>10 YR 3/1</td>
<td>10 YR 2/1</td>
<td>10 YR 2/1</td>
<td>10 YR 2/1</td>
</tr>
<tr>
<td>Color Pirofosfato</td>
<td>10 YR 7/3</td>
<td>10 YR 7/3</td>
<td>10 YR 7/4</td>
<td>10 YR 8/2</td>
<td>10 YR 5/3</td>
</tr>
<tr>
<td>% Materia orgánica</td>
<td>28.14</td>
<td>31.83</td>
<td>47.57</td>
<td>42.88</td>
<td>35.17</td>
</tr>
<tr>
<td>% Carbono orgánico</td>
<td>16.32</td>
<td>18.46</td>
<td>27.59</td>
<td>24.87</td>
<td>19.24</td>
</tr>
<tr>
<td>pH en CK</td>
<td>6.78</td>
<td>7.17</td>
<td>6.98</td>
<td>7.10</td>
<td>7.06</td>
</tr>
<tr>
<td>C.E. (μS/cm)</td>
<td>246</td>
<td>171</td>
<td>229</td>
<td>346</td>
<td>359</td>
</tr>
<tr>
<td>%CaCO₃</td>
<td>67.0</td>
<td>61.5</td>
<td>47.5</td>
<td>15.0</td>
<td>9.0</td>
</tr>
<tr>
<td>C.I.C. meq/100g</td>
<td>110</td>
<td>80</td>
<td>99</td>
<td>150</td>
<td>142</td>
</tr>
<tr>
<td>Cationes de K⁺ meq/100g</td>
<td>2.63</td>
<td>2.35</td>
<td>3.52</td>
<td>5.77</td>
<td>5.77</td>
</tr>
<tr>
<td>Cambio de Na⁺ meq/100g</td>
<td>1.44</td>
<td>0.53</td>
<td>0.44</td>
<td>0.52</td>
<td>0.46</td>
</tr>
<tr>
<td>Mg⁺ meq/100g</td>
<td>86.60</td>
<td>70.00</td>
<td>90.00</td>
<td>95.60</td>
<td>123.30</td>
</tr>
<tr>
<td>C/ON</td>
<td>1.1</td>
<td>2.40</td>
<td>1.83</td>
<td>1.83</td>
<td>3.05</td>
</tr>
<tr>
<td>Extracto H Total</td>
<td>14.4</td>
<td>10.8</td>
<td>11.8</td>
<td>11.6</td>
<td>12.0</td>
</tr>
<tr>
<td>Hidratos de H</td>
<td>7.15</td>
<td>7.15</td>
<td>11.31</td>
<td>10.42</td>
<td>13.40</td>
</tr>
<tr>
<td>Humanos Ácidos Húmicos</td>
<td>5.66</td>
<td>6.70</td>
<td>5.96</td>
<td>5.51</td>
<td>5.55</td>
</tr>
<tr>
<td>Ácido Fúlvico</td>
<td>3.79</td>
<td>14.88</td>
<td>1.00</td>
<td>1.12</td>
<td>0.95</td>
</tr>
<tr>
<td>C/N (total)</td>
<td>1.75</td>
<td>1.71</td>
<td>2.33</td>
<td>2.14</td>
<td>1.60</td>
</tr>
</tbody>
</table>

Tabla 1.- Análisis de las turbas muestreadas.

Table 1.- Analysis of the peat samples.
abundantes (sobre todo el calcio) y se van a fomentar las reacciones básicas. Este carácter eutrófico provoca en la turba un contenido alto en lignina debido a que la intensa actividad biológica transforma a la celulosa y a las hemicelulosas en productos solubles y por tanto, se forman complejos residuales, a base de lignina, que se acumulan. La relación C/N siempre es inferior a 30 y el contenido en cenizas es mucho más elevado que en turberas formadas en medios ácidos.

Usos de la turba

La turba obtenida en esta turbera es idónea para substrato de semilleros y para céspedes y campos de golf. Así mismo, se puede utilizar para mejorar las propiedades físicas de suelos arenosos y para la mejora de las propiedades químicas de suelos ácidos. Podría utilizarse en mezclas con compost urbanos.

Conclusiones

En los materiales de relleno del fondo del valle del río Ungría, se han descubierto capas de turba de hasta 71 m de potencia, las cuales constituyen un yacimiento que se extiende al menos entre las localidades de Caspueñas y Fuentes de la Alcarria (Guadalajara).

Se trata de una turbera intrazonal, dependiente de la geomorfología y litología de la cuenca del entorno, con turba del tipo hemist, formada a partir de una vegetación de la clase fitosociológica Phragmito-Magnocaricetea, típica de medios eutróficos con el nivel de agua próximo a la superficie del suelo. Los restos vegetales presentan más del 75% de plantas herbáceas y menos de 10% de restos de plantas arbóreas.

La analítica pone de manifiesto que se trata de turbas neutras a básicas, que no presentan problemas de aireación, con C.I.C. y contenidos en cenizas elevados. Otros parámetros, como conductividad eléctrica, relaciones C/N, distribuciones de ácidos hámicos y fúlvicos y contenidos en elementos nutritivos se pueden considerar valores normales para este tipo de turbas.

Los altos contenidos en CaCO₃, hacen que estas turbas sean inadecuadas para substratos de invernaderos. Sin embargo, son turbas idóneas para substrato de semilleros y para céspedes y campos de golf, entre otras posibles aplicaciones.

Agradecimientos

Los autores desean manifestar su agradecimiento a D. Andrés Marsá Fuentes y a Dña. Ana Álvarez Fernández, por la realización de los análisis de las turbas.

Referencias

