Anthropocene versus Holocene relative sea-level rise rates in the southern Bay of Biscay

Rangos de ascenso marino relativo en el sur del Golfo de Vizcaya durante el Antropoceno frente al Holoceno

Eduardo Leorri (1, 2) and Alejandro Cearreta (3)

(1) Universidade de Lisboa, Faculdade de Ciências, Centro de Geologia, Campo Grande, 1749-016, Lisboa, Portugal. eduleorri@yahoo.es
(2) Sociedad de Ciencias Aranzadi, Calle Zorroagagaina, 11, 20014 Donostia-San Sebastián.
(3) Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco/EHU, Bilbao 48080. alejandro.cearreta@ehu.es

ABSTRACT

Con el fin de evaluar la aceleración en el ascenso relativo del nivel marino durante el Antropoceno, se han comparado los resultados previamente establecidos para el siglo XX con los resultados obtenidos a partir del estudio de 61 nuevos puntos indicadores del nivel marino durante el Holoceno en el sur del Golfo de Vizcaya. Estos resultados indican un ascenso rápido hasta los circa 7000 años cal BP que se puede estimar en 9-12 mm año^-1. Desde entonces, el nivel del mar ha ascendido suavemente en concordancia con los datos proporcionados a nivel global, con una velocidad media de 0,7 mm año^-1. Esta velocidad contrasta netamente con la tasa de ascenso registrada durante el siglo XX de 1,9 mm año^-1, confirmando la aceleración detectada a nivel global como resultado de las actividades antropogénicas. Aunque los resultados obtenidos son altamente satisfactorios, los diferentes rangos de error proporcionados por ambos estudios hacen necesarios más estudios de este tipo para reducir los errores asociados a estas reconstrucciones.

Key words: Foraminíferos bentónicos, estuarios, Holoceno, nivel marino, Golfo de Vizcaya

Geogaceta, 46 (2009), 127-130
ISSN: 0213683X

Introduction

Leorri and Cearreta (2009a) calibrated the foraminiferal assemblages of two salt-marsh cores from two estuaries using a regional transfer function constructed to the southern Bay of Biscay. The foraminifera-based reconstructions were placed into a temporal framework using 137Cs, heavy metal concentrations, and 210Pb-derived sediment accumulation rates. The resulting relative sea-level curves were integrated with the Santander tide-gauge data providing a regional relative sea-level rise of 1.9 mm yr^-1 for the 20th century. This result contrasts with the almost negligible sea-level rise proposed for the same area during the 19th century by Leorri et al. (2008b), supporting the idea of a global acceleration in the rates of sea level at the turn of the 19th century linked with human-induced climatic change.

It is, therefore, desirable to obtain new high-resolution sea-level data from the Holocene, as they represent the fundamental basis for comparison with the historical and present changes. They provide a benchmark against which one must measure the additional sea-level rise that has occurred over the last 100-150 years (Church and White, 2006; Holgate, 2007). Available sea-level data from the North Atlantic Ocean provide a broad picture of fast sea-level rise since 15,000 cal yr BP (from 100-120 m below current level) until 6000 or 5000 cal yr BP when sea level reached its present position. Since then, sea level has been relatively stable (Lambeck, 1997).

We hypothesize that foraminiferal and sedimentological analysis combined with 14-C dating of the Holocene estuarine infilling would provide high-quality data from the Bay of Biscay to examine the issue of Holocene changes in the rate of relative sea-level rise. In this paper, we use the modern inferred relationship of foraminiferal assemblages with elevation derived from three different estuarine areas (Leorri et al., 2008a) to provide a Holocene sea-level curve. However, we argue that a single estuarine area could reflect local rather than regional forcing factors. Consequently, we study here multiple Holocene cores from two estuaries (Bilbao and Urdaibai).

Study area

This study was conducted in two estuaries with similar mesotidal ranges (mean tidal range: 2.5 m; Leorri et al., 2008b). The Bilbao estuary was originally the most extensive estuarine area on the Cantabrian coast of northern Spain. The modern estuary is 15 km long and is formed by the tidal part of the Nervion river, although four other rivers (Kadagua, Asua, Galindo and Gobelas) discharge into the main course. Today the Bilbao estuary is a largely artificial system which bears little resemblance to the original estuary. It has been calculated that the total amount of the original estuarine surface lost through human
activity is approximately 1000 ha (Leorri and Cearreta, 2004). On the other hand, the Urdaibai estuary (Urdaibai Biosphere Reserve) is formed by the tidal part of the Oka river, covers an area of 765 ha, and occupies the flat bottom of the 11.6 km long, 1 km wide alluvial valley (Leorri and Cearreta, 2004). On the other hand, the tidal range is approximately 1000 ha (Leorri and Cearreta, 2004).

Materials and methods

In order to establish the general framework of the relative sea-level rise during the Holocene at the regional level, 61 samples recovered from 20 boreholes and one trench were selected and analyzed for sedimentological and micropalaeontological contents and radiocarbon dated. Samples were chosen as representative of different estuarine subenvironments and elevations. All data are presented relative to current mean tidal level at the Bilbao tide gauge; 2.4 m above local ordnance datum (lowest tide at the Bilbao Harbour on 27th September 1878). The boreholes were drilled using a rotary drill that produced a core approximately 10 cm in diameter. In each case, the borehole terminated in Cretaceous basement.

Sedimentological and Micropalaeontological sample preparation followed standard methods and are described in Leorri and Cearreta (2004). Beta Analytic Inc. (USA) and NSF-AMS Facility at the University of Arizona (USA) carried out radiocarbon dating on forty five shell samples, four samples of foraminiferal tests (Ammonia tepida), eleven wood samples, and one bone sample. Twenty seven of them were large enough for radiometric analysis and C-14 content was quantified by measuring emanating radiation which occurs during the decay process. Of those, four samples contained less than 1 gr of final carbon content was quantified by measuring emanating radiation which occurs during the decay process. Of those, four samples contained less than 1 gr of final carbon content was quantified by measuring emanating radiation which occurs during the decay process. Of those, four samples contained less than 1 gr of final carbon content was quantified by measuring emanating radiation which occurs during the decay process. Of those, four samples contained less than 1 gr of final carbon content was quantified by measuring emanating radiation which occurs during the decay process. Of those, four samples contained less than 1 gr of final carbon content was quantified by measuring emanating radiation which occurs during the decay process. Of those, four samples contained less than 1 gr of final carbon content was quantified by measuring emanating radiation which occurs during the decay process. Of those, four samples contained less than 1 gr of final carbon content was quantified by measuring emanating radiation which occurs during the decay process. Of those, four samples contained less than 1 gr of final carbon content was quantified by measuring emanating radiation which occurs during the decay process. Of those, four samples contained less than 1 gr of final carbon content was quantified by measuring emanating radiation which occurs during the decay process. Of those, four samples contained less than 1 gr of final carbon content was quantified by measuring emanating radiation which occurs during the decay process. Of those, four samples contained less than 1 gr of final carbon content was quantified by measuring emanating radiation which occurs during the decay process. Of those, four samples contained less than 1 gr of final carbon content was quantified by measuring emanating radiation which occurs during the decay process. Of those, four samples contained less than 1 gr of final carbon content was quantified by measuring emanating radiation which occurs during the decay process. Of those, four samples contained less than 1 gr of final carbon...
autocompaction (loss of porosity due to the load of overlying sediments) introduces the greatest vertical errors, especially from unconsolidated peat sequences (Gehrels, 1999). Boreholes obtained in both the Bilbao and Urdaibai estuaries indicate that the depth of the stratigraphic contact between the basement and the Quaternary sediments greatly varies between 4 and more than 30 m from the upper to the lower estuary, respectively. These sediments are composed mainly by gravels and coarse sands at the base; they vary however in the mud (silt and clay) content, with the presence of some organic-rich lenses (Leorri and Cearreta, 2004). Thus, although minerogenic sediments dominate and the sand content is very high, the great length of some cores and the variable mud content suggest that additional accommodation space due to autocompaction can be responsible for at least part of the observed sea-level rise. Hence, in order to address autocompaction we have directly compared samples with statistically similar radiocarbon ages recovered at different elevations above the basement-Quaternary contact (Fig. 1), following Gehrels (1999). One limitation of our approach is that samples do not necessarily represent equivalent depositional environments and, therefore, this model should be considered carefully. Nevertheless, the results obtained allow to infer reasonably well the actual extent of autocompaction.

Based on the vertical errors mentioned and the substantial age errors (true ages lie somewhere in a time span between 100 and over 650 years) the obtained sea-level curve has to be interpreted in terms of metre scale vertical resolution and sub-millennial scale age resolution.

Results and Discussion

Figure 2 illustrates observations of sea-level change for the past ca. 9000 years from the Bilbao and Urdaibai estuaries based on the sand content and foraminiferal assemblages. From the new 61 samples analyzed here as SLIPs, forty five can be considered good SLIPs, ranging from ca. 8500 cal yr BP to ca. 200 cal yr BP. Fourteen samples plot significantly lower or higher than expected and are considered to be the result of reworked materials, and therefore discarded as SLIPs (black squares in Fig. 2). Similar age inversions have been reported by Cearreta and Murray (2000) when attempting to date transgressive surfaces in the Bilbao and Santoña estuaries. Three fluvial samples are used as limiting dates (i.e., sea level must be below these points) although they are not considered as valid sea-level index points. SLIPs from both estuaries exhibit a very good agreement and, consequently, will be discussed together. The overall trend exhibits two main phases: 1- fast relative sea-level rise prior to 7000 cal yrs BP, that ranges between 9 to 12 mm yr⁻¹; and 2- a relative sea-level rise of 0.7 mm yr⁻¹ since ca 6700 cal yr BP until 19th century (Fig. 2). This trend represents both sea-level rise and vertical land movements, unfortunately, no research on Holocene neotectonic movements has so far been undertaken in this region, although such causes have been invoked to explain aspects of the evolution of this margin during the Neogene and Pleistocene (Mary, 1983).

The initial phase of sea-level rise presents few and disperse samples and, therefore, they could provide a misleading interpretation. This probably responds to a highly energetic depositional environment. The estimation of relative sea-level rates derived from all the SLIPs younger than 7000 cal yr BP provide a figure of 0.7 mm yr⁻¹ for the pre-anthropogenic sea-level rise, in agreement with estimations of the eustatic contribution from melting of land-ice base, although this is still a matter of content (see Gehrels et al., 2006). This figure could be even smaller if autocompaction has not been fully corrected. It is now generally recognised that sea level has been relatively stable over the last 7000-6000 years (Church et al., 2008) as found here. However, the rate of sea-level rise changes abruptly when recent relative sea-level variations are analyzed. Leorri and Cearreta (2009a) obtained a RSL curve based on foraminiferal transfer functions from salt marshes coupled with local and regional tide-gauge records that provided a regional sea-level rise of 1.9 ± 0.3 mm yr⁻¹ since 1920, seemingly related to the anthropogenic impact of the global warming. Although isostatic corrections should be performed (Lambeck, 1997), a similar vertical movement will be applied to both pre-anthropogenic and anthropogenic rates and so the difference between them should remain constant.

Although these results are encouraging, in order to better constrain pre-anthropogenic sea-level changes, further analysis has to be done to narrow down current reconstruction errors of the Holocene reconstructions.

Acknowledgements

Dr. Leorri was supported by the contract SFRH/BPD/44750/2008
This research was funded by the following projects: GIC07/32-IT-332-07, Acción Integrada Luso-Espanhola nº E-20/80/ Acción Integrada Hispano-Portuguesa HP2007-0098 (Assessing palaeoenvironmental proxies in the Iberian coast: marsh foraminifera as sea-level indicators) and Estudio de las variaciones recientes del nivel marino en la costa vasca en el marco del proyecto K-Egokitzen-Cambio climático: impacto y adaptación (Etorkek). This paper is also a contribution to IGCP Project 495 («Late Quaternary Land-Ocean Interactions: Driving Mechanisms and Coastal Responses») and to the Northwest Europe working group of the INQUA Commission on Coastal and Marine Processes.

References