Cumulate origin of the Alkaline Xenoliths from Graciosa Island (Açores, Portugal): geochemical modelling

Origen acumulado de los xenolitos alcalinos de la Isla Graciosa (Açores, Portugal): modelización geoquímica

Patricia Larrea (1), Marceliano Lago (1), Zilda França (2), Elisabeth Widom (3), Carlos Galé (1), Teresa Ubide (1) y Enrique Arranz (1)

(1) Departamento de Ciencias de la Tierra. Universidad de Zaragoza. C/ Pedro Cerbuna 12, 50009, Zaragoza (España). plarrea@unizar.es; mlago@unizar.es; carlos.gale@gmail.com, tubide@unizar.es; earranz@unizar.es
(2) Departamento de Geociências, Universidade dos Açores. Ap. 1422, 9501-801, Ponta Delgada (Portugal). zfranca@notes.uac.pt
(3) Department of Geology, Miami University. 207 Shideler Hall, Oxford, 45056, Ohio (USA). widome@muohio.edu

RESUMEN

En este trabajo se ha comparado la composición en REE de los xenolitos alcalinos objeto de estudio y las lavas de la Unidad del Vulcão Central de la isla Graciosa (Açores). Dada la similitud composicional entre ambos, se han desarrollado dos modelos geoquímicos, tanto para elementos mayores (MELTS) como para tierras raras (hoja de cálculo ad-hoc), con el objetivo de estudiar el proceso genético que los relaciona. En ambos casos, se ha conseguido derivar mediante un proceso de cristalización fraccionada, a partir de la lava menos diferenciada de la Unidad del Vulcão Central, la composición de un xenolito alcalino representativo del resto. Los resultados obtenidos indican que los xenolitos serían los acumulados de cámara magmática y las coladas basálticas de la Unidad del Vulcão Central, los fundidos extruidos resultado del proceso de cristalización fraccionada.

Palabras clave: Xenolito, alcalino, MELTS, Graciosa, Açores.

Introduction

The Graciosa Island belongs to the Central Group of the Azores archipelago, between 39º and 39º06’ N latitudes and 27º56’ and 28º05’ W longitudes. It is located within the Azorean microplate, a topographic high near the Mid Atlantic Ridge (MAR), bordered by the Eurasian, African and American plates (Fig. 1A).

The island is formed by volcanic rocks that range from basalts to trachytes. Gaspar (1996) recognized three major volcanic complexes (Fig. 1B), in order of decreasing age: the Serra das Fontes Volcanic Complex (SFVC), the Serra Branca Volcanic Complex (SBVC) and the Vitória-Vulcão Central Volcanic Complex. The latter comprises two contemporaneous units: the Vitória Unit (VU) and the Vulcão Central Unit (VCU).

The petrology and composition of the Graciosa xenoliths were the focus of preliminary studies (Larrea et al., 2010a-in press-, b and c). In this work we compare the whole rock composition of alkaline xenoliths from the VCU, with previously published compositions for their host basalts (Almeida, 2001). We
present the first modelling on gabbroic alkaline xenoliths in Azores, in order to establish their origin.

Materials and methods

Six alkaline enclaves were sampled from a basaltic lava flow within the VCU (Fig. 1B). They are 5 to 30 cm long and show sub-rounded shapes and sharp contacts. A discontinuous reaction rim between the xenoliths and the host basalt has been recognized. Where plagioclase or pyroxene are in contact with the basalt a clear contact appears; in contrast, a large rim is observed between amphibole crystals and the basalt. This rim is 200 to 400 μm in size: it is composed of allotriomorphic olivine, pyroxene, plagioclase, ilmenite and Ti-magnetite.

Sample preparation was carried out at the University of Zaragoza. Whole rock major and trace element concentrations were determined by ICP-MS in the Ibercron laboratory (University of the Basque Country). Further details on analytical methods can be found on García de Madinabeitia et al. (2008).

Petrology

Gabbroic alkaline xenoliths in the VCU are composed of different proportions of olivine, clinopyroxene, kaersutite, plagioclase, Fe-Ti oxides and F-rich apatite, resembling xenoliths from other Azorean islands. Their cumulate texture suggests that the xenoliths are magma chamber cumulates; the different xenolith types may reflect the chamber zoning. Olivine shows two different compositional groups, Fo78-68 and Fo57-53, analysed in the same sample. The most magnesian compositions occur either as inclusions or interstitial crystals. Clinopyroxene crystals are diopside and augite, showing a wide fractionation range (Fs8-17) and high TiO2 values (up to 2.7%), in agreement with the alkaline affinity of the rock. Plagioclase displays a range of compositions between An76 and An49; the Or molecule increases towards the andesine terms, indicating an alkaline trend. All xenoliths contain kaersutite with little compositional variations (mg#: 0.7-0.6).

Geochemistry

According to their composition, the xenoliths are classified as alkaline gabbros, with the following contents in SiO2 (41.8-47.3%), MgO (10.5-3.4%), Na2O+K2O (3.0-4.1%), TiO2 (2.4-5.1%), P2O5 (0.3-4.6%), Ta (1.2-2.9ppm) and Nb/Y (0.9-1.1) relations.

Table 1.- Summary of the data obtained by a fractional crystallization model using the MELTS software (Asimow and Ghiorso, 1998; Ghiorso and Shack, 1995).

<table>
<thead>
<tr>
<th>Phases / T°</th>
<th>1295</th>
<th>1270</th>
<th>1250</th>
<th>1230</th>
<th>1210</th>
<th>1190</th>
<th>1170</th>
<th>1150</th>
<th>1130</th>
<th>1110</th>
<th>1090</th>
<th>1070</th>
<th>1050</th>
<th>1030</th>
<th>1010</th>
<th>990</th>
<th>970</th>
<th>950</th>
<th>930</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Liquid</td>
<td>100</td>
<td>98</td>
<td>96</td>
<td>94</td>
<td>92</td>
<td>70</td>
<td>58</td>
<td>43</td>
<td>32</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>SiO2. Iq.</td>
<td>46.67</td>
<td>46.87</td>
<td>47.01</td>
<td>47.14</td>
<td>47.28</td>
<td>47.00</td>
<td>47.65</td>
<td>49.46</td>
<td>51.10</td>
<td>52.51</td>
<td>53.64</td>
<td>54.59</td>
<td>55.35</td>
<td>55.85</td>
<td>56.17</td>
<td>56.32</td>
<td>56.33</td>
<td>56.24</td>
<td>0.00</td>
</tr>
<tr>
<td>TiO2. Iq.</td>
<td>3.05</td>
<td>3.13</td>
<td>3.19</td>
<td>3.25</td>
<td>3.30</td>
<td>3.58</td>
<td>3.35</td>
<td>2.72</td>
<td>2.28</td>
<td>1.95</td>
<td>1.68</td>
<td>1.48</td>
<td>1.26</td>
<td>1.07</td>
<td>0.90</td>
<td>0.74</td>
<td>0.61</td>
<td>0.44</td>
<td>0.00</td>
</tr>
<tr>
<td>Na2O Iq.</td>
<td>3.01</td>
<td>3.09</td>
<td>3.15</td>
<td>3.20</td>
<td>3.26</td>
<td>4.16</td>
<td>4.74</td>
<td>5.51</td>
<td>6.47</td>
<td>6.38</td>
<td>6.53</td>
<td>6.54</td>
<td>6.54</td>
<td>6.55</td>
<td>6.51</td>
<td>6.51</td>
<td>6.51</td>
<td>7.67</td>
<td>0.00</td>
</tr>
<tr>
<td>K2O Iq.</td>
<td>1.01</td>
<td>1.04</td>
<td>1.06</td>
<td>1.08</td>
<td>1.09</td>
<td>1.45</td>
<td>1.74</td>
<td>2.28</td>
<td>2.86</td>
<td>3.44</td>
<td>3.99</td>
<td>4.58</td>
<td>5.00</td>
<td>5.31</td>
<td>5.53</td>
<td>5.68</td>
<td>5.77</td>
<td>4.67</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 1.- Resumen de los datos obtenidos mediante un modelo de cristalización fraccionada con el software MELTS (Asimow and Ghiorso, 1998; Ghiorso and Shack, 1995).
Taking into account their petrographical and compositional features, these gabbros can be divided into three groups: (1) leucogabbros, (2) kaersutite gabbros and (3) pyroxene-kaersutite gabbros (Larrea et al., 2010b and c).

The REE patterns of the six studied xenoliths are rather parallel and enriched, with La/LuN: 5.2-11.9 (Fig. 2). Moreover, VCU basalts hosting the studied xenoliths (Almeida, 2001) display alkaline REE patterns, in agreement with those of the xenoliths (Fig. 2). Therefore, the magmas generating the alkaline xenoliths and the basalts may be related. Due to the cumulative origin of these xenoliths, they were probably formed by a fractional crystallization process; on the other hand, the basalts may represent the extruded melts generated in that crystallization process.

Fractional crystallization models

In order to prove this hypothesis we present two different approaches: i) using major element compositions and ii) via minor trace element contents.

In both cases, the most primitive available lava (G173; Almeida, 2001) has been used as the closest composition to the primary magma. It has 10.07% MgO, 8.05% FeO, 46.07% SiO2, 230 ppm Ni and 517 ppm Cr. On the other hand, the model has been calculated for the GRZF1x1 xenolith (Fig. 2) which represents an intermediate composition more evolved than the G173 lava; thus this composition cannot be the result of the first crystallization stages of G173 lava.

i) The major element model has been done using the MELTS software (Asimow and Ghiorso, 1998; Ghiorso and Shack, 1995). The fractionation process starts at 5 kbar (approx. 16.5 km depth; Beier et al., 2006); in these conditions MELTS calculates a liquidus temperature of 1295 °C for sample G173. The results obtained from the fractional crystallization process are summarized in table I, where the fractionated mineral phases, the percentage of remaining liquid and its composition in weight percent of oxides are shown for each temperature stage.

The results show that a minimum crystallization of 40% is needed to start crystallizing Pl and Amp. At these conditions (1170°C) the composition of the residual melt is similar to that of GRZF1x1 xenolith -SiO2 (44.85%), TiO2 (2.35%), Na2O (3.56%) and K2O (0.54%). These data indicate that the studied xenoliths are the crystallization product of a rather evolved liquid.

Therefore, we can derive the composition of one representative alkaline xenolith from the most primitive lava composition of the VCU, through a fractional crystallization process.

ii) Modeling the Rare Earth elements (REE) has been developed with a spreadsheet based on the mathematical equation for a fractional crystallization process (Rayleigh, 1896):

$$CL = CoF(D-1)$$

Where Co is the concentration of an element in the initial magma, F is the fraction of remaining magma, D is the global partition coefficient, calculated with the partition coefficient of the element for each fractionated mineral (Zack & Brumm, 1998; Skulski et al., 1994; McKenzie & O’Nions, 1991; Lemarchand et al., 1987; Paster et al., 1974) and with the percentages of fractionated minerals in the major element model (24% Ol, 70% Cpx, 4% Pl, 2% Am), and CL is the concentration of the element in the remaining liquid that would crystallize for a given F and D.

Figure 3 shows agreement between the xenolith and the model at a rate of 40% of crystallization (60% of remaining magma), as it has been observed in the major element model. This result also suggests that the xenoliths and the host basalts are related by a fractional crystallization process, based on the similarity of their REE’s patterns (Figs. 2 and 3).

Conclusions

Xenoliths hosted in a basaltic lava of the Vulcão Central Unit are alkaline gabbros; they can be divided in three groups.

Mineral chemistry and geochemical composition reveals the alkaline affinity of these xenoliths. Their REE patterns are similar to each other and to the alkaline host basalts. Therefore, it is likely that the xenoliths and their host basalts have a common origin and are related by a fractional crystallization process.

In order to demonstrate that hypothesis two models, based on major and REE elements, have been developed. In both cases, it is possible to reproduce the composition of one representative xenolith starting from the composition of the most primitive lava of the VCU.

Hence, xenoliths and VCU lavas were probably generated in a common
magma chamber. The former may represent the cumulate phases, while the latter might correspond to the extruded melts resulting from the fractional crystallization process.

Acknowledgements

This work is included in the objectives of the pre-doctoral grant B023/10, Diputación General de Aragón (Patricia Larrea Márquez). We thank Ramón Casillas and an anonymous reviewer for their very valuable comments and suggestions, which helped us to improve the original manuscript.

References

