Origen y significado de los gabros anortosíticos bandeados de Castillo de las Guardas, batolito de la Sierra Norte de Sevilla

J. D. DE LA ROSA y A. CASTRO
Departamento de Geología. Universidad de Huelva. 21819 La Rábida. Huelva.

Resumen: El batolito de la Sierra Norte de Sevilla se caracteriza por contener un gran volumen de rocas básicas e intermedias en comparación con otros batolitos de las zonas internas del Macizo Ibérico. En el interior de los cuerpos básicos afloran rocas acumuladas con olivino y/o plagioclasa como minerales cumulus las cuales indican la existencia de procesos de cristalización fraccionada en la génesis de las rocas básicas. Las rocas acumuladas con plagioclasa cumulus se encuentran generalmente bandeadas con laminación paralela, cruzada y frecuentes contactos discordantes entre las láminas. Se ha estudiado en detalle una sección de 6,5 cm de espesor de los gabros anortosíticos bandeados representativa del bandeado de los gabros que afloran en Castillo de las Guardas. La sección estudiada consiste en una alternancia de (1) láminas de composición anortosítica con textura acumulada, (2) láminas leucogabbroníticas piroxénicas con textura mesoa acumulada a ortoacumulada, (3) láminas gabbroníticas anfibólica-piroxénica con textura ortoacumulada, y ocasionalmente (4) láminas con olivino y clinozoisita muy alterados. Salvo en éste último tipo de láminas, el resto posee plagioclasa como mineral cumulus, y piroxeno y/o anfibol minerales intercumulus. Las relaciones de campo, las variaciones Petrográficas y los contenidos de A n en plagioclasa, y A 1, Mg/(Mg+Fe²⁺), Ti en piroxenos y anfiboles de la sección estudiada son consistentes con un modelo de cristalización en condiciones dinámicas y estáticas alternantes de un magma basáltico.

Palabras clave: gabros, rocas acumuladas, piroxenos, anfiboles, plagioclasas, Batolito de la Sierra Norte de Sevilla, Zona Surportuguesa, Macizo Ibérico.

Abstract: The Seville Range batholith is characterized by the high proportion of basic and intermediate rocks to granites compared with other batholiths of inner areas of Iberian Massif. Cumulate rocks with olivine and/or plagioclase cumulus appear within basic rock massifs, suggesting as fractional crystallization was effective during magma crystallization. Cumulate rocks with plagioclase are layered, with parallel and cross-bedding, and unconformity contacts. A section of 6,5 cm wide of anortosite gabros of representative of layered gabros outcropping at Castillo de las Guardas massif has been studied. The studied section consists of an alternance of 1) anortositic layers with accumulate texture, 2) pyroxene leucogabbronitite layers with mesoaccumulate and orthoaccumulate textures, 3) amphibole-piroxene gabbronite layers with orthoaccumulate texture, and occasionally 4) olivine and clinozoisite layers very altered. Plagioclase cumulus is common in all the layer excepting the last one. Field relationships, petrographic variations, An content of plagioclase and A1, Mg/(Mg+Fe²⁺), Ti in pyroxenes and amphiboles of studied section are consistent with a crystallization model of static and dynamic alternate stages of a basaltic magma.

Key words: gabros, cumulate rocks, pyroxenes, amphiboles, plagioclasas, Seville Range batholith, Southportuguesse Zone, Iberian Massif

Las rocas acumuladas y en particular los gabros bandeados han sido objeto de muchos estudios experimentales y descriptivos, a partir de los cuales se han propuesto distintos tipos de procesos para explicar la génesis de estas rocas. Tales procesos incluyen la caída gravitatoria de cristales (Wager y Deer, 1939), flotación (Wiebe, 1986), corrientes de densidad (Irvine, 1987), cristalización in situ (Campbell, 1978; McBurney y Noyes, 1979), nucleación rítmica (Marsle, 1978, 1987; Thy et al., 1988) en la etapa de cristalización cumulus y procesos de difusión (Wager et al., 1960), compactación (Irvine, 1980; Sparks et al., 1985), coevolución composicional en el líquido intercumulus (Tait et al., 1984; Tait, 1985) en la etapa de cristalización postcumulus. La nomenclatura propuesta por Wager et al. (1960) para definir los tipos de rocas acumuladas ha tenido vigencia hasta nuestros días. Las connotaciones genéticas que posee dicha nomenclatura, unida a la existencia de una gran variedad de procesos originadores de rocas acumuladas (Irvine, 1987), hacen preferible que dicha
clasificación sea utilizada exclusivamente con carácter descriptivo (Irvine, 1982; Sparks et al., 1985).

Los estudios a pequeña escala en gabros bandeados, aunque menos numerosos (Maaløe, 1978, 1987; McBirney y Noyes, 1979; Thy et al., 1988; Conrad y Naslund, 1989) son de especial importancia ya que a partir de ellos se pueden conocer las condiciones de cristalización y génesis de este tipo de rocas (Conrad y Naslund, 1989) y extrapolarlo a modelos de generación de rocas acumuladas a gran escala.

En este trabajo se hace un estudio detallado de una sección de un gabro anortósítico bandead del batolito de la Sierra Norte de Sevilla, a partir del cual se propone un modelo de generación basado en la cristalización en condiciones dinámicas de un magma basáltico.

Aspectos mesoscópicos de los gabros anortósíticos bandeados

El batolito de la Sierra Norte de Sevilla (BSNS) (Fig. 1) contiene una gran proporción de rocas básicas (gabros y dioritas) e intermedias (tonalitas a granodioritas) en comparación con otros batolitos de las zonas más inter- nas del Macizo Ibérico. En el interior de los cuerpos básicos existen importantes afloramientos de rocas acumuladas con olivino (de la Rosa y Castro, 1990) y/o plagioclase como minerales cumulus, que sugieren procesos de cristalización fraccionada en la génesis de las rocas básicas a partir de un magma de composición basáltica.

La Figura 1 muestra un esquema de un afloramiento de gabros anortósíticos situado en Castillo de las Guar-

Figura 1. Esquema geológico del afloramiento de rocas ultrabásicas existente en el Embalse de la Minilla, Castillo de las Guardas.

Rev. Soc. Geol. España, 7 (3-4), 1994
GABROS ANORTOSÍTICOS BANDEADOS BSNS

Figura 2.- Relaciones de campo de las rocas ultrabásicas de Castillo de las Guardas: a) y b) gabro anortófico bandeado. Observar la presencia de laminaciones paralelas, cruzadas y frecuentes contactos discordantes entre las láminas. En a) además existe un dique de facies pegmatíticas que corta el bandedo original. c) Gabronorita olivínica con bandeado muy penetrativo. Hay que resaltar también el tamaño de grano grueso que posee este tipo de rocas.

das. Se ha distinguido varios tipos de facies de gabros anortósicos (banedeados, masivos, masivos con pegmatoides) y gabros olivínicos (troctolitas y gabronoritas olivínicas). La presencia de facies troctolíticas con 51% de plagioclasa y 46% de olivino y la existencia generalmente de contactos graduales entre los diferentes tipos de rocas acumuladas indican una variación continua desde los gabros anortósicos hasta gabros olivínicos.

Los gabros anortósicos pueden encontrarse bandeados (So), con laminación paralela y cruzada, siendo frecuente la presencia de contactos discordantes entre las láminas (Fig. 2a, 2b). Los gabros anortósicos bandeados poseen contactos graduales con gabros anortósicos masivos y con pegmatoides (Fig. 1).

Las gabronoritas olivínicas también pueden estar laminadas (Fig. 2c), aunque la característica más sobresali ente de estas rocas es el tamaño de grano grueso.

Es frecuente la existencia de facies pegmatoides en venas y bolsadas en el interior de los gabros anortósicos bandeados y masivos. La composición mineralógica de las facies pegmatoides es muy parecida al de la gabronorita encajante, sin embargo el tamaño de grano es mucho mayor.

Otros afloramientos de gabros anortósicos del BSNS se localizan en el sector oriental (Cerro del Moro y Algarrobito, ver Simancas, 1983), en el interior de la prolongación de la banda de rocas básicas donde se encuentran las rocas acumuladas de Castillo de las Guardas. En general, este macizo es muy parecido al descrito en este trabajo, aunque la proporción de gabros olivínicos es mucho menor.

Petrografía

Se ha estudiado una sección de 6,5 cm de espesor de gabro anortófico bandeado, la cual se ha considerado representativa del bandedo que posee. Se han diferenciado 14 láminas (A hasta N) en función de las variaciones texturales, modales y mineralógicas existentes (Fig. 3 y 4).

En cada lamina se ha estudiado la textura y mineralogía. También se han calculado parámetros petrográficos tales como M (moda), C (cristalínidad: número de cristales por centímetro cúbico de una roca) y n (índice de cristal), los cuales permitirán cuantificar las variaciones petrográficas existentes entre las diferentes láminas.

Los parámetros C y n han sido racionatizados y utilizados por Maaβ (1978, 1987) en el estudio del bandeadodel rítmico de Skærgaard a partir de las descripciones de Wager (1961). Maaβ (1978) define el índice de cristal como el número de cristales de un mineral dado en 1cm³ de roca, es decir, un mineral de tamaño de grano fino posee un alto n y un mineral de tamaño de grano grueso tendrá un n pequeño. Siendo N el número de cristales en una sección, A el área de la sección y M la moda del mi
neral en la sección (en porcentaje), el índice de cristal n sería:

$$n = \left[\frac{(N / A)^{3/2}}{(0,01 M)} \right] = \frac{C}{0,01 M}$$

Sin embargo Conrad y Naslund (1989) invalidan el cálculo propuesto por Maaløe (1978) con un ejemplo en el que dos rocas con un mineral de igual tamaño poseen distintos n.

Recientemente Maaløe reconoce un error en la fórmula inicial y propone un nuevo cálculo de n (comunicación personal, 1991):

$$n = \left[\frac{N}{(A M / 100)} \right]^{3/2} = \left(\frac{C 100}{M} \right)^{3/2}$$

el cual ha sido utilizado en este estudio.

Se han distinguido cuatro tipos de láminas en función de la composición mineralógica: 1) Anortosíticas, 2) Gabonoritas piroxénicas y piroxeno-anfibólicas, 3) Gabonoritas anfibol-piroxénicas y 4) Gabonoritas olivínicas:

1) Anortosíticas (láminas A, H, J y N; Figs. 3 y 4): son láminas monominerales, constituidas esencialmente por plagioclasa (An 94-88) sin zonación y con textura adcuamulada. El espesor de estas láminas está comprendido entre 0,1 y varios centímetros. Entre los intersticios pueden existir cristales anhedrales de clinopiroxeno y opacos (< 1%). Las plagioclasas se encuentran orientadas con el plano (011) paralelo a la laminaclación.

2) Gabonoritas piroxénicas (láminas B, C, D, F, I, K y L; Figs. 3): La textura es mesoacumulada a ortoacumulada; está formada por plagioclasa subhedral de composición y tamaño muy parecido a las plagioclasas de las láminas anortosíticas. El espesor de las láminas es de 0,1 hasta varios cm. El piroxeno es anhedral, intercúmulos y se encuentra transformado parcialmente a anfibol, siendo el porcentaje de transformación mayor hacia el techo de las láminas. También se ha distinguido en estas láminas un débil incremento en la proporción de anfibol en relación con piroxeno. Existen cantidades trazas de ortopiroxeno.

3) Gabonoritas anfibol-piroxénicas (láminas G y M; Fig. 3): Se caracteriza por la textura ortoacumulada poiquilítica constituida por plagioclasas como minerales cúmulos de igual composición que las plagioclasas de las láminas anortosíticas y gabonoríticas piroxénicas. Sin embargo el tamaño de grano de las plagioclasas es mucho mayor. El espesor varía entre 0,4 mm y varios cm. Los minerales intercúmulos son anfibol marroño poiquilítico y clinopiroxeno. Este último se encuentra como restos de cristales sin transformar. Las maclas de plagioclase se disponen perpendiculares al bandeadado.

4) Gabonoritas olivínicas: Se encuentran muy alteradas y pueden constituir láminas (lámina E; Fig. 3) o en-
contrase en forma de pequeños nódulos en el interior de las bandas anortósicas (lámina N).

Variaciones petrográficas a través de las láminas.

En general se puede describir el bandead de los ga-
bro anortósicos como microrrítmico, alternando lámi-
nas anortósicas + gabronoritas piroxénicas + gabronori-
tas px-anf ± gabronoritas olivínicas de espesores centi-
métricos. En este mismo orden se puede apreciar (Fig. 4):

i) Disminución en la abundancia modal de plagioclasa
(100% en las anortitas, hasta 58% en las gabronoritas
px-anf).

ii) Disminución del índice de cristal de plagioclasa
(alto en las anortitas y muy bajo en las gabronoritas
px-anf) y de anfibol + anfibol.

iii) Incremento en el grado de transformación de piro-
xeno a anfibol desde el muro al techo de las láminas ga-
bronoríticas. Incluso en la lámina G se observa una indi-
vidualización de cristales poiquilíticos de anfibol. Son
numerosas las facies con este tipo de transformación, so-
bre todo cerca de afloramientos de rocas ultrabásicas.

Los contactos entre las láminas anortósicas y el resto
de las láminas son netos, mientras que los contactos en-
tre las láminas piroxénicas y anfibóticas son graduales.

Química mineral

Plagioclase, piroxeno y anfibol de las láminas más re-
presentativas de la sección de gabro anortósico bandead
han sido analizados con una microsonda JEOL JCA733
bajo unas condiciones de intensidad de corriente de 20 nA
y voltaje de aceleración de 15 kv. Estos análisis han sido
utilizados para calcular la fórmula estructural, y conocer
e la variación de los diferentes cationes a lo largo de las lámi-
nas estudiadas. Imágenes de backscattered (contraste Z)
fueron utilizadas para identificar zonaciones en las fases
minerales analizadas, sobre todo en anfibol.

El olivino no ha sido analizado dada la intensa ser-
pentinitización que presenta en la sección estudiada.

Plagioclase

Se han realizado un total de 24 análisis, muchos de los
cuales corresponden a núcleo y borde de plagioclases
de 15 cristales. La composición de las plagioclases en
los cuatro tipos de bandas definidas son muy constante,
existiendo altos contenidos en anortita (An93-An87; Fig.
5). Se ha observado la existencia de una zonación inver-
sa en muchos cristales, con diferencias del 4% An, aun-
dicho valor puede encontrarse dentro de los límites
de error de la microsonda electrónica. La composición
de las plagioclases de las láminas anortósicas es idénti-
ca a las plagioclases subhidrales de tamaño de grano
medio de las capas que poseen los grandes cristales de
anfiboles poiquilíticos, aunque éstas últimas están débil-
mente zonadas. No se han observado importantes dife-
rencias composicionales entre las plagioclases de las lámi-
nas anortósicas y las plagioclases de las láminas ga-
bronoríticas.

Clinopiroxeno

Se efectuaron 22 análisis de piroxenos (Tabla 1), so-
bre todo en contacto con anfibol. Fe²⁺ ha sido recala-
dado a partir de Droop (1987). La composición de los pi-
oxenos varía entre En 43-49 Fs 8-9 Di 49-42. Al,
Mg/(Mg+Fe²⁺), Ca y Na del piroxeno no muestran gran-
des variaciones a lo largo de la sección estudiada (Fig.
5). Sin embargo sí se observan diferencias que pueden ser correlacionables con la presencia de anfibol en la lamina F y G. En la lámina F existe una disminución de Al\\(^{IV}\), Al\\(^{III}\) de muro a techo los cuales coinciden con un incremento en la transformación de piroxeno a anfibol. En la lámina G se produce una variación inversa a la existente en la capa F, es decir aumenta Al\\(^{IV}\), Al\\(^{III}\) y Na, mientras que disminuye en Mg/(Mg+Fe\\(^{3+}\)) de muro a techo (Fig. 5).

Anfibol

La Tabla II muestra una relación de análisis de anti-

Tabla I.- Análisis de microsonda y fórmula estructural representativos de piroxenos de los gabros hondoideos. Fe\\(^{3+}\) ha sido calculado a partir de Drop (1987). GN PX: gabronorita piroxénica, GN PX-AN: gabronorita piroxeno-anfibolítica, GN AN-PX: gabronorita anfibolico-piroxénica.

<table>
<thead>
<tr>
<th>TIPO DE ROCA</th>
<th>GN PX</th>
<th>GN PX</th>
<th>GN PX AN</th>
<th>GN PX AN</th>
<th>GN PX</th>
<th>GN PX</th>
<th>GN PX AN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al\(^{IV})</td>
<td>0.127</td>
<td>0.094</td>
<td>0.095</td>
<td>0.098</td>
<td>0.121</td>
<td>0.031</td>
<td>0.050</td>
</tr>
<tr>
<td>Al\(^{III})</td>
<td>0.09</td>
<td>0.006</td>
<td>0.013</td>
<td>0.015</td>
<td>0.009</td>
<td>0.005</td>
<td>0.006</td>
</tr>
<tr>
<td>Fe\(^{3+})</td>
<td>0.021</td>
<td>0.031</td>
<td>0.034</td>
<td>0.038</td>
<td>0.052</td>
<td>0.044</td>
<td>0.058</td>
</tr>
<tr>
<td>Cr</td>
<td>0.017</td>
<td>0.007</td>
<td>0.011</td>
<td>0.012</td>
<td>0.007</td>
<td>0.002</td>
<td>0.005</td>
</tr>
<tr>
<td>Fe\(^{2+})</td>
<td>0.156</td>
<td>0.098</td>
<td>0.123</td>
<td>0.125</td>
<td>0.096</td>
<td>0.106</td>
<td>0.107</td>
</tr>
<tr>
<td>Mn</td>
<td>0.004</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
<td>0.004</td>
<td>0.004</td>
<td>0.007</td>
</tr>
<tr>
<td>Mg</td>
<td>0.885</td>
<td>0.908</td>
<td>0.975</td>
<td>0.847</td>
<td>0.869</td>
<td>0.873</td>
<td>0.860</td>
</tr>
<tr>
<td>Ca</td>
<td>0.878</td>
<td>0.904</td>
<td>0.903</td>
<td>0.923</td>
<td>0.916</td>
<td>0.966</td>
<td>0.963</td>
</tr>
<tr>
<td>Na</td>
<td>0.015</td>
<td>0.014</td>
<td>0.016</td>
<td>0.017</td>
<td>0.017</td>
<td>0.006</td>
<td>0.005</td>
</tr>
<tr>
<td>K</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
</tr>
</tbody>
</table>
Tabla II. Análisis de microscopía, y fórmula estructural representativo de anfiboles de los gabros bandeados. Fe³⁺ ha sido calculate sobre la base de 13 cationes excluyendo Na, K y Ca. GN PX: gabonorita piroxénica, GN PX-AN: gabonorita piroxeno-anfibólica, GN AN- PX: gabonorita anfibólica-piroxénica.

Figura 7.- a) Fotografía back scattered de clinopiroxeno transformado a Mg-hornblenda. b) Detalle del contacto entre clinopiroxeno y plagioclase a través de anfibol. Resaltar la presencia de actinolita en contacto con clinopiroxeno.

Relaciones piroxeno-anfibol

La sección de gabro bandeado analizada se caracteriza por la presencia de clinopiroxeno transformado a Mg-hornblenda. La Figura 7a muestra una imagen back-scattered de clinopiroxeno transformado a Mg-hornblenda. En el contacto entre ambas fases se observa la presencia de una pequeña banda continua de actinolita (Fig. 7b).

Los análisis de pares clinopiroxeno en contacto con anfibol de las diferentes lámimas no muestran diferencias importantes de Kd (Kd=(XMg/XFe)(XFe/Mg)) a lo largo de la sección estudiada (Fig. 9), siendo Kd < 1.

Sin embargo se observa como las líneas que unen pares de clinopiroxeno en contacto con anfibol no son paralelas. Este hecho puede ser interpretado debido a: (1) una cristalización de anfibol a partir de la reacción líquido + clinopiroxeno = Mg-hornblenda y después actinolita en estado subsolidus o una cristalización de Mg-Hornblenda directamente a partir del líquido en las bandas con grandes cristales poiquilíticos de anfibol englobando plagioclase subhedral (lámina G); y (2) debido a cambios en la composición de líquido desde el muro al techo de cada lámina, tal como lo sugiere la composición de anfibol y clinopiroxeno de las láminas F y G.

Discusión

A partir del estudio de la sección de gabros bandeados se puede resumir los siguientes puntos:

1) Los gabros bandeados anortósitos de Castro de las Guardas poseen un bandeado micorrítico consistente en una alternancia de bandas monominerálicas de plagioclase, gabronoritas piroxénicas, gabronoritas anfibólicas y ocasionalmente de gabronoritas olivínicas, y poseen estructuras que evidencian la presencia de flujo tanto a escala macroscópica (laminación paralela, cruzada y contactos discordantes) como a escala microscópica (orientación de los ejes de plagioclase paralelos a la laminación).

2) La plagioclasa es el mineral cúmulo característico de todas las láminas, y es el que presenta la mayor variedad textural de todos los minerales analizados, siendo subhedral con grandes porcentajes modales y altos índices de cristal en las bandas anortósitas, y con menor abundancia modal y bajos índices de cristal en las láminas de gabronorita hornblédica. Los contenidos en An de la plagioclasa se mantiene constante a lo largo de la sección (An93-An87).

3) Los minerales intercúmulos son clinopiroxeno y anfiboles. Ambos poseen características texturales y composicionales parecidas, aunque pueden existir ligeras variaciones composicionales en las partes superiores e inferiores de ciertas láminas de gabronorita piroxénica y gabronorita anfibólica (láminas F y G).

Todos los datos aportados anteriormente deben de estar incluidos en cualquier modelo que explique el bandeadon de los gabros anortósitos. Las rocas acumuladas y bandeadas se originan a partir de diferentes procesos que
tienen lugar durante las etapas de cristalización cumulus, postcumulus y subsolídos (Irvine, 1987). Dichos procesos no actúan de manera aislada, aunque generalmente una roca acumulada puede ser el resultado de un proceso generador concreto que haya sobresalido de los restantes.

En la etapa cumulus se han descrito procesos de caída gravitatoria de cristales (Wager y Deer, 1939), flotación de cristales (Wiebe, 1979), corrientes de densidad (Irvine, 1987), cristalización in situ (Campbell, 1978; Mc Birney y Noyes, 1979), y nucleación rítmica (Malae, 1978, 1987) entre otros. El producto de la cristalización de un magma en la etapa cumulus puede ser modificado por procesos de difusión (Wager et al., 1960), compactación (Irvine, 1980; Sparks et al., 1985), convección composicional en el líquido intercumulus (Tait et al., 1984; Tait, 1985), formando parte estos procesos de la etapa de cristalización postcumulus.

El magma en los estadios finales de la cristalización se caracterizó por una saturación en volátiles, lo cual puede condicionar la cristalización del magma en la etapa subsolídos.

Los datos aportados en este trabajo, sobre todo de tipo textural, permiten deducir que las rocas bandeadas se originaron a partir de procesos desarrollados en la etapa de cristalización cumulus, no siendo relevantes los originados en la etapa postcumulus. La presencia de

Figura 8. Variaciones de AlIV, AlVI, Ti, Mg/(Mg+Fe$^{2+}$) y Na+K en huecos A en anfíbolos de la sección de gabro anortósítico estudiada.

Figura 9. Diagrama AFM de análisis de anfibol en contacto con piroxeno. Se observa una intersección de las líneas que unen clinošperna en contacto con anfibol de las diferentes láminas estudiadas.
frecuentes facies pegmatoides en forma de bolsadas y diques en los gabros anfibólicos que rodean al macizo de rocas acumuladas y diques de facies pegmatoides que cortan al bandead de origen de los gabros anortósíticos, también muestran como existieron procesos subolídicos, dominados por los altos contenidos en volátiles del magma. Este tipo de facies también ha sido descrita en otros complejos márticos (Beard y Day, 1986) similares a los del BSNS.

Las texturas acumuladas y mesoncumuladas en los gabros anortósíticos bandeados del BSNS indican una cristalización de los mismos esencialmente en la etapa cumulus. De entre todos los mecanismos descritos, la formación de los gabros bandeados en esta etapa puede ser atribuida a modelos de cristalización parecidos a los que originan los anillos Leisegang en rocas igneaes (McBirney y Noyes, 1979) o a partir de procesos de nucleación rítmica (Maaløe, 1978, 1987). Estos mecanismos explican las variaciones petrográficas y mineralógicas existentes; sin embargo, no tienen en cuenta otros hechos tales como las condiciones dinámicas, deducidas por las estructuras de flujo observadas tanto a escala mesoscópica (laminación paralela, cruzada, contactos discordantes entre láminas) y microscópica (orientación de las plagioclasas en las láminas anortósíticas), las cuales deben ser consideradas como un factor importante en la génesis de estas rocas.

Los datos aportados en este trabajo son congruentes con una cristalización de un magma báasilico a partir de una alternancia de periodos dinámicos y estáticos, los cuales son responsables de una fraccionación del magma para originar láminas de rocas de diferentes composiciones (Fig. 10). Las lamínas anortósiticas cristalizaron en condiciones dinámicas a partir de un magma báasilico sobreensifriado, el cual daría lugar a plagioclasas subolídicas con alto índice de cristal (alto índice de nucleación), orientadas y sin zonación.

La presencia de magmas hiperfelsédspáticos en la naturaleza como generadores de rocas anortósíticas ha sido sugerida por Wiebe (1979) a partir de criterios mesósópicos tales como la presencia de diques y bordes enfriados en cuerpos anortósíticos los cuales se generan por mecanismos de fraccionamiento de olivino y piroxenos a partir de un magma báasilico en la corteza inferior (Wiebe, 1986, 1990). En el afloramiento estudiado no se han observado evidencias que confirmen la existencia de líquidos hiperfelsédspáticos. Este hecho unido a la similitud entre los gabros anortóticos masivos y las láminas anortósíticas nos hace pensar en un origen para los gabros anortósíticos parecido al de las láminas anortósíticas de los gabros bandeados.

Las láminas gabronoríticas se desarrollarían en condiciones poco o nada dinámicas, reflejando las láminas la composición global del magma báasilico presente en ese momento, siendo inexistente la presencia de fraccionación, aunque dentro de cada lámina puede existir variaciones composicionales en las fases ferromagnesanas conforme se produce la cristalización del magma de manera a la etapa siguientes.

En resumen, los gabros anortósíticos bandeados y rocas acumuladas de Castillo de las Guardas se originaron a partir de la cristalización de magmas báasilicos en la etapa cumulus en condiciones dinámicas-estáticas alternantes.

Agradecemos al Prof. J. P. Bard y a un revisor anónimo la revisión crítica del manuscrito. Agradecemos también al Dr Ed Stephens las facilidades dadas para utilizar la microsonda en la Universidad de St Andrews (Escocia). JR recibió una ayuda del MEC para estancia breve en el extranjero. Este trabajo ha sido financiado con el proyecto PB-01-0600 de la DGICYT.

Bibliografía

Tait, S.R., Huppert, H.E. y Sparks, R.S.J. (1984): The role of compositional convection in the formation of adcumulate rocks. Lithos 17: 139-146

Manuscrito recibido el 30 de Marzo de 1994
Aceptado el manuscrito revisado el 16 de Mayo de 1994.