How to be predictive with low net-to-gross reservoirs: a Triassic case study

Cómo ser predictivo con rocas almacén de baja relación neto a bruto: un ejemplo triásico

Luis Miguel Yeste¹, Augusto Nicolás Varela², Neil McDougall³, Fernando García-García⁴, Javier Jaímez⁵ and César Viseras⁶

¹ Sedimentary Reservoirs Workgroup (SEDREGROUP), Dept. of Stratigraphy and Palaeontology, University of Granada, Spain. 18071 Granada. lmyeste@sedregroup.com
² Centro de Investigaciones Geológicas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina. augustovarela@clg museo.unlp.edu.ar
³ Consultant Sedimentologist & Stratigrapher, Madrid, Spain. neilmcdougall@gmail.com
⁴ Sedimentary Reservoirs Workgroup (SEDREGROUP), Dept. of Stratigraphy and Palaeontology, University of Granada, Spain. fgarciaag@ugr.es
⁵ Sedimentary Reservoirs Workgroup (SEDREGROUP), Centro de Instrumentación Científica. Campus de Fuentenueva. University of Granada, Spain. 18071 Granada. jjajimete@ugr.es
⁶ Sedimentary Reservoirs Workgroup (SEDREGROUP), Dept. of Stratigraphy and Palaeontology, University of Granada, Spain. 18071 Granada. viseras@ugr.es

ABSTRACT

The ability to be predictive in exploratory geology (hydrocarbon prospecting or hydrogeology) is very important when dealing with a highly heterogeneous reservoir rock and with a low net-to-gross ratio. A Triassic example is presented in the succession informally known as TIBEM (south central Spain) corresponding to a very distal fluvial flood plain that is studied in outcrop and in cores and well logs. Wells made behind the outcrop (OBO characterization, Outcrop / Behind Outcrop). It is shown that there are characteristic patterns of 1D data from gamma ray and distribution of tadpoles acquired in wells that allow as to accurately locate the well within the detail sedimentary model of the ancient floodplain. In this way, from the 1D data, inferences can be made about the 3D disposition of the sandstone sedimentary bodies corresponding to the channel and the crevasse-splay lobes, as well as the interconnectivity between these and their potential permeability barriers and baffles. The usefulness of this workflow when it comes to making robust models is evident.

Keywords: floodplain, Triassic, reservoir rock, borehole, well logging.

RESUMEN

La capacidad de ser predictivo en geología exploratoria (prospección de hidrocarburos o hidrogeología) es sumamente importante cuando se tratase con una roca almacenante altamente heterogénea y con baja proporción de capas porosas frente a impermeables (baja ratio net-to-gross). Se presenta un ejemplo triásico en la sucesión informalmente conocida como TIBEM (sector centro occidental de España) correspondiente a una llanura de inundación fluvial muy distal que se estudia en afloramiento y en testigos de sondeo y diagrafías de pozos realizados detrás del afloramiento (caracterización OBO). Se pone de manifiesto que existen unos patrones característicos de datos 1D de diagrafías de rayos gamma y de distribución de tadpoles adquiridos en pozos que permiten situar con precisión el pozo dentro del modelo sedimentario de detalle de la antigua llanura de inundación. De este modo, a partir del dato puntual se pueden hacer inferencias sobre la disposición en 3D de los cuerpos sedimentarios de arenisca correspondientes al canal y a los lúbulos de derrame, así como la interconectividad entre estos y sus potenciales barreras y defletores de permeabilidad. La utilidad de este protocolo de trabajo a la hora de confeccionar modelos robustos se pone de manifiesto.

Palabras clave: llanura de inundación, Triásico, roca almacen, sondeo, diagrafías de pozo.
Distribution of sedimentary bodies and sub-environments in the modeled area

The exceptional outcropping characteristics in the area allow us to establish the architectural elements of the study unit, which are the characteristics of a distal fluvial floodplain furrowed by high sinuosity fluvial channels (Viseras and Fernández, 2010). From this we see that the basal main channel and point bar deposits pass laterally into floodplain and swamp deposits interbedded with the crevasse-splay deposits. Toward the eastern part of the outcrop, the corresponding main channel and point bar deposits occur. Finally, toward the top of this key outcrop, main channel and point bar deposits occur and grade laterally into the crevasse-splay deposits to the E of the outcrop (Fig. 2).
Conceptual model: outcrop and subsurface information

The exceptional quality of the outcrops and the possibility of laterally following each stratigraphic horizon through a Digital Outcrop Model (DOM) and a series of 6 boreholes have allowed us to elaborate a conceptual model that includes a series of facies associations distributed in bands around the main element from which the sediment comes, that is, the fluvial channel (Fig. 3).

Thus, the main channel, with approximate dimensions of 40 m in width and 3 m thick, in its accretion inner margin grades into point bar deposits, which may have two features at the top: scroll bars and locally chute channels. The scroll bar grades into distal floodplain deposits. On the erosive or inner margin of the channel there is a crevasse splay complex that can be partially eroded locally by a crevasse channel. The distal floodplain environment is located up to 300 m from the main channel and locally can intersperse swamp deposits.

The analysis of the well logs from 6 boreholes (Fig. 1) that cut the studied unit shows that there are characteristic patterns of each of the sub-environments distinguished in outcrop. Thus, channel bodies are characterized by a bell-shape profile of the Gamma Ray (GR) log, random azimuth and low to high angles of tadpole patterns (Fig. 3). On the other hand, the crevasse-splay bodies characteristically show a funnel-shape GR log, unidirectional azimuths and low dip angles of tadpole patterns, as well as synsedimentary deformation in their lower part (especially frequent in the medial crevasse, Fig. 3).

Finally floodplain deposits are represented in well logs by a serrated-shape of GR log, unidirectional azimuths and very low angles of tadpole patterns.

Conclusions

The integrated analysis of outcrop and subsurface (OBO characterization)
of a Triassic unit of low net-to-gross ratio originated from the sedimentary dynamics of a fluvial distal floodplain has allowed us to conclude that:

1. There are characteristic lithofacies, GR logs and tadpole patterns for each of the sub-environments that can be established in the floodplain.
2. The width of the bands of lithofacies has values that are related to the size of the channel from which the sediment comes.
3. Inferences can be made from 1D data obtained in well on the position and dimensions in the space of the main sandstone architectural elements (main channel, point bar, crevasse splay).
4. The correct application of this workflow allows reducing uncertainty in the location of sand-on-sand contacts, advancing lateral amalgamation patterns and vertical stacking of sandstone geobodies.

Acknowledgements

The quality of the manuscript has improved significantly in response to the comments of Dr. J.M. Soria, another anonymous reviewer and the editor (Dr. Díaz). Funding was provided by the research project CGL2017-89618-R (AEI/FEDER, UE), the RNM369 Research Group (PAI) and by the Repsol-University of Granada agreement. The authors are indebted to the Consejería de Agricultura de Castilla-La Mancha (JCCM), the city hall of Alcaraz and Luis Fernández and María Alcazar (landowners) for the drilling licenses. The authors also thank REPSOL EXPLORACION, CEPSA E.P. and CRIMIDESA Mining Co. for their support.

References