Laboratorios Virtuales: la Experiencia de la Universidad Politécnica de Madrid

Virtual Labs: Experience of the Technical University of Madrid

Luis Catalán

1 Gabinete de Tele-Educación (GATE), Universidad Politécnica de Madrid, calle Ramiro de Maeztu, 7, 28040 Madrid

l.catalan@upm.es

RESUMEN. Se expone la experiencia de la Universidad Politécnica de Madrid en el uso de los entornos virtuales en la simulación de prácticas de laboratorio. Se señalan las circunstancias económicas y de masificación de nuestra Universidad para, a continuación, indicar las nuevas funcionalidades de los entornos 3D. De forma muy breve se describe el entramado institucional que soporta a los diferentes proyectos y se muestra el grado de desarrollo de los diferentes laboratorios sobre Electrónica, Biotecnología, Control de Riegos y Ciencia de los Materiales. Para terminar, se apunta la voluntad de cooperación de la UPM con otras iniciativas semejantes, particularmente del mundo latinoamericano.

ABSTRACT. The experience of the Polytechnical University of Madrid in the use of the virtual environments in the emulation of laboratory practices is exposed. The economic and overcrowding circumstances of our University and the new functionalities of 3D learning environments are displayed. Briefly describes the institutional framework that supports the different projects and shows the degree of development of the different laboratories on Electronics, Biotechnology, Irrigation Control and Materials Science. Finally, the willingness to cooperate in the UPM with other similar initiatives scores, particularly in the Latin American world.

PALABRAS CLAVE: Laboratorios virtuales, Laboratorios remotos, Enseñanza universitaria, Electrónica, Biotecnología, Ciencia de los Materiales, Control de Riegos.

KEYWORDS: Virtual laboratories, Remote laboratories, University education, Electronics, Biotechnology, Materials Science, Irrigation Control.
1. Introducción

La enseñanza universitaria española está afectada, por un lado, por la tensión entre el volumen de la población estudiantil y los recursos disponibles, y, por otro, por los nuevos horizontes que las TIC han desvelado.

En el ámbito de la Universidad Politécnica de Madrid, la característica, desde hace varios años, es la de la masificación del alumnado: en el año 2013 se encontraban matriculados 44.245 estudiantes, con un incremento del 7,3% desde 2009 y un valor extremo en 2011 de 45.615 alumnos. Sin embargo, el número de profesores desde el año 2009 ha descendido en un 8,5%. En la actualidad, la plantilla de profesores asciende a 3.092.

Desde el punto de vista del gasto, el estado de ejecución del presupuesto en la UPM ha registrado una tendencia claramente decreciente: desde los 475 millones de euros en 2009 a los 349 de 2013.

En la UPM estas circunstancias se ven complicadas por la dispersión geográfica de sus centros: 23 escuelas y facultades distribuidas en 3 campus además de varios centros ubicados en diferentes localizaciones de Madrid.

Como consecuencia, los medios y los espacios disponibles para la elaboración de las prácticas de laboratorio se encuentran sobrepasados por el volumen de la población discente.

En este contexto, van surgiendo diversas experiencias de simulación que salen al paso de los problemas anteriores y, no menos importante, incorporan nuevas funcionalidades pedagógicas y operativas [1]:

- Pueden facilitar la realización de las experiencias a través de Internet, en cualquier momento y lugar, optimizando los tiempos necesarios de actividad presencial.
- Pomanen el trabajo autónomo del alumno, eje del nuevo espacio europeo de educación superior, así como la personalización del proceso de aprendizaje.
- Mejoran el aprovechamiento de las instalaciones, aulas y recursos físicos disponibles así como permite ahorrar costes en material de laboratorio. Complementariamente, en el caso de los laboratorios remotos, se rentabilizan los equipos al estar disponibles a tiempo completo.
- Permiten ofrecer prácticas que, en la vida real, no serían posibles por motivos de seguridad en la manipulación de equipos y materiales (material radiactivo, nuclear, aparatos eléctricos o material biológico), por el coste de los equipos implicados, por el entorno en el que ha de realizarse (fuera de los laboratorios) o por tratarse de experiencias que de forma natural requerirían de plazos de tiempo muy dilatados.
- Posibilita el acceso de colectivos externos: alumnos de enseñanzas medias, estudiantes de otras universidades, personas con discapacidad o, en general, la sociedad en su conjunto.

Este modo de experimentación no pretende sustituir todas las prácticas presenciales sino complementar el mundo real.

2. Antecedentes

En este contexto y en el marco de los Proyectos de Innovación Educativa de la Universidad, surge en el curso 2010-2011 el proyecto transversal: “PEIA-UPM: Plataforma de Experimentación para los Estudios de Ingeniería y Arquitectura de la UPM”. El Proyecto trataba de integrar todas las aproximaciones a los laboratorios virtuales, remotos y simulaciones esbozados o surgidos con anterioridad.[2] Sus objetivos eran:

- Poner en producción los laboratorios desarrollados, llevando a cabo experiencias piloto con estudiantes matriculados en asignaturas regladas de títulos de grado, con el fin de evaluar la adecuación y utilidad de dichos laboratorios.
- Localizar las experiencias que en el seno de la UPM se habían realizado en lo referente al diseño de simuladores y otros recursos para llevar a cabo prácticas virtuales.
- Interrelacionar la plataforma que hospeda los laboratorios virtuales con los servicios que ofrece la plata-
forma institucional de telesenanza (Moodle).

- Desarrollar metáforas visuales, para imprimir mayor sensación de realismo o suplir las limitaciones en la interacción con los objetos del mundo virtual, así crear librerías de objetos, que pudieran ser reutilizados e intercambiados entre diferentes proyectos.
- Evaluar la pertinencia y posibilidad de utilizar los laboratorios virtuales por otros colectivos sociales externos a la UPM.

3. Plataforma (GridLabUPM)

Como resultado de los trabajos del Proyecto de Innovación Educativa, se construye la plataforma GridLabUPM que en 2013 se encomienda al Gabinete de Tele-Eduación (GATE).

La plataforma está construida sobre el software de código abierto OpenSim [3], que gestiona los mundos virtuales 3D en tanto que los objetos están dotados de funcionalidad mediante el lenguaje LSL (Linden Scripting Language) [4].

El alumno o usuario, a través de su avatar (su representación dentro del mundo virtual) puede realizar prácticas dentro del espacio creado al efecto, en el horario que desee, simplemente con un ordenador con acceso a internet y un visor gratuito. El número máximo de usuarios simultáneos por región es de 30, por el momento.

Al entrar en la plataforma o Grid, el avatar se encuentra con una región central de bienvenida, constituida por edificios centrales y un punto de encuentro virtual, así como con una región o isla por cada proyecto, donde, además de los laboratorios en los que se realizan las prácticas virtuales, el avatar puede desplazarse e interactuar con otros usuarios en espacios o salas virtuales de reuniones, salas de video y lugares de esparcimiento.

![Figura 1. Región central de la plataforma GridLabUPM donde se hallan alojados los laboratorios del proyecto.](image)

Los laboratorios se hayan alojados en los servidores locales de los responsables docentes de los proyectos en tanto que el sistema común, GridLabUPM, los enlaza y gestiona técnicamente de forma integrada. La arquitectura es, pues, descentralizada.

Los usuarios pueden consultar el manual general de usuario y visualizar un video sobre el proyecto en su conjunto. Además, tienen a su disposición videos, video-tutoriales y guías prácticas de cada laboratorio concreto. Los administradores y desarrolladores han elaborado un manual técnico general así como un manual propio de cada proyecto.

Cualquier interesado puede realizar un paseo virtual por la plataforma mediante solicitud de un avatar invitado.

El Gabinete de Tele-Educación (GATE), www.upm.es/gate, ha trabajado igualmente en la interoperabilidad de OpenSim-Moodle. Hasta el momento, se ha logrado la creación de avatares desde la plataforma de telenseñanza y la integración de las calificaciones obtenidas en el mundo virtual.

4. Laboratorios desarrollados

Hasta la fecha, se han desarrollado completamente los cuatro laboratorios que se describen en los apartados siguientes.

Además, para el presente curso 2013-2014, se han seleccionado 9 proyectos de laboratorios nuevos, comprendidos en las áreas siguientes: Física, química, biología, automática y sector agroforestal. En su conjunto, afectan a más 6.000 alumnos y 49 profesores pertenecientes a 36 asignaturas.

4.1. Laboratorio Remoto de Electrónica eLab3D

Con la utilidad del laboratorio remoto eLab3D (ETS de Ingeniería y Sistemas de Telecomunicación) se consigue que las mismas actividades que se realizan en un laboratorio presencial puedan ser realizadas de forma real y remota, en un entorno virtual, desde cualquier lugar con acceso a Internet.

El alumno puede manejar diversos instrumentos: fuente de alimentación, generador de señales, multímetro y osciloscopio, configurar circuitos electrónicos así como realizar mediciones sobre los mismos para comprobar su funcionamiento.

Figura 2. Instrumental del laboratorio eLab3D: osciloscopio, multímetro, generador de señales, fuente de alimentación y placa de pruebas. Cada una de las líneas representan cables de conexión.
El uso del laboratorio eLab3D está inicialmente dirigido a alumnos y profesores de la UPM aunque también ha sido utilizado por estudiantes y profesores de enseñanza secundaria y profesionales del sector industrial. La intención final es poder ofrecer este recurso a cualquier usuario interesado en el área de la electrónica que disponga de acceso a Internet.

Para el desarrollo del laboratorio, ha sido necesario, realizar un sistema electrónico modular y escalable que permite la reconfiguración de diferentes circuitos prácticos básicos relacionados con el área de la electrónica analógica. Se basa en una Tarjeta Principal que incluye interfaz para comunicarse con las “Tarjetas Modulares para Prácticas”. El sistema dispone de elementos de comutación que permiten seleccionar los puntos de medida que se quieren realizar, dentro de un número de posibilidades establecidas para cada práctica y cada módulo. Las “Tarjetas Modulares para Prácticas” incluyen los distintos componentes analógicos necesarios a la hora de configurar las prácticas a realizar y los elementos precisos para lograr las conexiones de esos componentes.

Para la comunicación entre el mundo virtual y los equipos reales de laboratorio, se ha desarrollado un programa con el entorno software LabVIEW de National Instruments [5] que permite: configurar y controlar el sistema electrónico modular donde se encuentran las tarjetas de prácticas, controlar los instrumentos de excitación y medida, y realizar la interacción con el usuario del entorno 3D.

![Diagrama de eLab3D](https://via.placeholder.com/150)

Figura 3. Esquema del Laboratorio Remoto eLab3D. En la imagen se muestra parte de los equipos reales del Laboratorio de Electrónica y su réplica en el mundo virtual. El software LabVIEW permite el control de los instrumentos reales y la comunicación con el mundo virtual.

4.2. Laboratorio Virtual de Biotecnología Agroforestal

En el laboratorio virtual de Biotecnología Agroforestal (ETSI Agrónomos, ETSI Montes y Facultad de Informática) [6] se desarrollan prácticas virtuales imposibles de realizar de forma presencial. Su objetivo es lograr que el alumno aprenda las técnicas básicas de ingeniería genética de plantas para la modificación y estudio de su genoma. Los cambios inducidos en un gen permiten conocer su función específica. Así mismo, el alumno conocerá las técnicas de crecimiento de plantas mediante cultivo in vitro.

Concretamente, la práctica consiste en estudiar la función de un gen que codifica una proteína capaz de proteger a un chopo frente al ataque de ciertos hongos fitopatógenos. Para ello, el estudiante-avatar aprende a micro-propagar un chopo para poder trabajar con él en el laboratorio y a transformarlo para poder estudiar la función de esta proteína. Para ello dispone de todo el material típico de un laboratorio de biotecnología agroforestal, incluyendo tanto la maquinaria como todo el instrumental de laboratorio necesario, desde una cabina de flujo laminar o una cámara visitable de crecimiento controlado de plantas, hasta micro-pipetas, vasos de precipitado, tubos, bandejas de hielo, horno, autoclaves y, por supuesto, material vegetal de crecimiento virtual.

www.revistacampusvirtuales.es
En un entorno virtual se puede acelerar tanto como se desee, una reacción bioquímica o una prueba de laboratorio, así como el crecimiento del sistema vegetal, ya sea un árbol o una planta herbácea, cuyo tiempo en la vida real puede variar de varios días a varios meses. Así el tiempo requerido para realizar la práctica que actualmente está en curso se estima en un total de dos años con un coste de aproximado de entre 15.000-25.000 euros por alumno mientras que en un entorno virtual se puede realizar en menos de una hora con un coste prácticamente nulo.

![Imagen de vegetación]

Figura 4. Chocos modificados genéticamente, en el Filotró, sala con las características ambientales óptimas para su desarrollo.

El laboratorio está estructurado en fases; el alumno debe conseguir el nivel de conocimientos requerido en cada una de ellas para acceder a la siguiente.

El entorno virtual fomenta la interacción constante de los alumnos participantes en el transcurso de la práctica.

4.3. Laboratorio Virtual de Control de Riegos

El laboratorio virtual de Control de Riegos (ETSI Agrónomos) se representan varias parcelas con cultivos de maíz y los mecanismos necesarios para regar cada una de las parcelas.

Para llevar a cabo esta experiencia, el alumno debe tener en cuenta las condiciones meteorológicas, el estado del suelo, el estado de crecimiento de la planta, la cantidad de agua disponible para el riego. Conforme a esos factores, ha de programar el riego sobre su cultivo de la manera más apropiada.

El alumno dispone de un panel de control en el que visualiza diferentes gráficas relacionadas con el estado del cultivo.

Entre otras particularidades, en el entorno virtual se puede acelerar el tiempo del proceso y simular diferentes fenómenos meteorológicos (lluvia, tormentas, etc.)

4.4. Laboratorio de Ciencia e Ingeniería de materiales

El laboratorio virtual de Ciencia e Ingeniería de Materiales (ETSI Caminos, Canales y Puertos) consta de un número determinado y ajustable de puestos de trabajo que permiten al usuario, mediante el seguimiento de una serie de pantallas, completar tres cuestionarios: el primero relacionado con las medidas (masa y longitud) de objetos geométricos generados de forma aleatoria, el segundo relacionado con la teoría de errores y el tercero con medidas eléctricas.

www.revistacampusvirtuales.es
Los resultados que se esperan son afianzar conceptos prácticos y teóricos, relacionados con la asignatura de física (medidas de longitudes y masas, aplicación de la Teoría de Errores y medidas eléctricas), así como enseñar el correcto uso de los distintos equipos y herramientas de los laboratorios, como son la báscula, la balanza, el calibre y el multímetro.

5. Encuestas de usuarios

Durante el curso 2012-13 se llevaron a cabo dos pruebas o evaluaciones, una en el Laboratorio Remoto eLab3D y otra en el Laboratorio de Biotecnología Agroforestal.

Respecto del Laboratorio Elab3D, se solicitó a los alumnos la cumplimentación voluntaria de una encuesta de uso y satisfacción. La población de alumnos fue dividida en dos grupos: el primero realizó la práctica de manera presencial o convencional, en total 32 alumnos, en tanto que un segundo grupo desarrolló la práctica de forma virtual, 31.

Se analizaron diversos aspectos cuyos resultados se ofrecen a continuación de forma resumida.

Los alumnos que realizaron la práctica virtual valoraron en mayor medida esta nueva modalidad de aprendizaje que los alumnos de la práctica presencial. Si el 46% de los primeros hubiera deseado seguir realizando la práctica únicamente en la forma convencional, el porcentaje se incrementa al 56% en el segundo caso. No obstante, el primer grupo aún expresa su apego al manejo directo de los instrumentos físicos, siquiera de manera combinada o complementaria con la experimentación online, y la necesidad de una simplificación en el aprendizaje o instrucción previos para realizarla.

Respecto de la percepción o valoración del aprendizaje obtenido, el grupo de encuestados de la modalidad online valoraron con un 3,2 de nota media (en una escala de 1 a 5) el conjunto de aspectos relativos a la mejora en la comprensión de los aspectos teóricos y en las habilidades prácticas en el manejo de los equipos. La puntuación obtenida fue del 3,6 en el grupo presencial. Considerando la falta de familiaridad con el mundo virtual y su desarrollo inicial, la diferencia es altamente esperanzadora.

En general, el resto de las rúbricas, como facilidad de utilización, fiabilidad de respuesta y de funcionamiento de los equipos, sensación de realidad, percepción de la presencia simultánea e interactiva de sus compañeros en el laboratorio virtual y, por último, su grado de satisfacción global alcanzaron umbrales medios en la calificación en el grupo de alumnos que realizaron la práctica virtual.

www.revistascampusvirtuales.es
En el caso del Laboratorio de Biotecnología Agroforestal, tras una primera prueba realizada por 7 profesores y 2 alumnos de doctorado, se implementaron diversas mejoras en el prototipo. Posteriormente, los alumnos realizaron una práctica de micro-propagación de chopos, copia múltiple de un gen e inserción del gen en un vector (véhicule de clonación). Durante su desarrollo dispusieron de la asistencia de un tutor automático y un avatar controlado por uno de los informáticos, que les proporcionó ayuda respecto al manejo del avatar y la estructura del laboratorio.

En general, el nivel de satisfacción fue muy alto y la puntuación media de los aspectos más significativos fue de 7 sobre 10. Se ha podido detectar que el nivel de conocimientos de estos alumnos se ha visto incrementado en un 20% respecto de los que no realizaron la práctica virtual.

6. Conclusiones

La tecnología 3D aplicada a la docencia favorece la autonomía del alumno y la personalización de la práctica educativa. Los mundos virtuales estimulan la creatividad del estudiante y su capacidad de resolución frente a las diferentes situaciones que se le plantean.

Los nuevos entornos potencian el trabajo en grupo, la participación con otros compañeros y la interacción con el educador, simultáneamente y en un mismo escenario.

La experimentación virtual amplía de forma extraordinaria las posibilidades de las prácticas docentes mediante experiencias que no serían posibles desarrollar en la vida real o mediante variantes agregadas a cada una de ellas.

En un contexto de limitación de recursos, es de especial relevancia su capacidad para optimizar el uso de las instalaciones reales y reducir costes operativos.

Se requieren esfuerzos suplementarios para mejorar su usabilidad y, en la misma línea, para implementar herramientas automáticas de orientación y ayuda.

En el ámbito concreto de la Universidad Politécnica de Madrid, nuestra institución ha optado por la promoción de estos proyectos y la creación de un soporte institucional mediante el Servicio de Laboratorios Virtuales que gestiona el Gabinete de Tele-Educación.

Así mismo, la UPM estima absolutamente necesaria la participación en redes y alianzas con otras instituciones, particularmente del mundo latinoamericano. Paralelamente, desea ofrecer servicios 3D a otros grupos sociales mediante prácticas y objetos en abierto.

Agradecimientos

El presente artículo ha sido realizado con la colaboración de los profesores Marta Berrocal, Sergio López y Jaime Ramírez así como la del equipo del Gabinete de Tele-Educación de la UPM: Oriol Borràs, Daniel Contreras, Daniel Fernández-Avilés, Arturo Fomariz y José Carlos Salazar.

Cómo citar este artículo / How to cite this paper

Referencias