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Fluid–solid equilibria of flexible and linear rigid tangent chains
from Wertheim’s thermodynamic perturbation theory
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An extension of Wertheim’s first-order thermodynamic perturbation theory is proposed to describe
the global phase behavior of linear rigid tangent hard sphere chains. The extension is based on a
scaling proposed recently by Vega and McBride@Phys. Rev. E65, 052501~2002!# for the equation
of state of linear chains in the solid phase. We have used the Einstein-crystal methodology, the
Rahman–Parrinello technique, and the thermodynamic integration method for calculating the free
energy and equation of state of linear rigid hard sphere chains with different chain lengths, including
the solid–fluid phase equilibria. Agreement between the simulation data and theoretical predictions
is excellent in all cases. Once it is confirmed that the proposed theory can be used to describe
correctly the equation of state, free energy, and solid–fluid phase transitions of linear rigid
molecules, a simple mean-field approximation at the level of van der Waals is included to account
for segment–segment attractive interactions. The approach is used to determine the global phase
behavior of fully flexible and linear rigid chains of varying chain lengths. The main effect of
increasing the chain length in the case of linear rigid chains is to decrease the fluid densities at
freezing, so that the triple-point temperatures increase. As a consequence, the range of temperatures
where vapor–liquid equilibria exist decreases considerably with chain length. This behavior is a
direct result of the stabilization of the solid phase with respect to the liquid phase as the chain length
is increased. The vapor–liquid equilibria are seen to disappear for linear rigid chains formed by
more than 11 hard sphere segments that interact through an attractive van der Waals mean-field
contribution; in other words, long linear rigid chains exhibit solid–vapor phase behavior only. In the
case of flexible chains, the fluid–solid equilibrium is hardly affected by the chain length, so that the
triple-point temperature reaches quickly an asymptotic value. In contrast to linear rigid chains,
flexible chains present quite a broad range of temperatures where vapor–liquid equilibria exist.
Although the vapor–liquid equilibria of flexible and linear rigid chain molecules are similar, the
differences in the type of stable solid they form and, more importantly, the differences in the scaling
of thermodynamic properties with chain length bring dramatic differences to the appearance of their
phase diagrams. ©2003 American Institute of Physics.@DOI: 10.1063/1.1619936#
h
d

a
a
e

x
id

ai
u

dy-

r-
ula-
lar
t of
tial
tud-
cal-

of
and
an
I. INTRODUCTION

During the last two decades, considerable advance
been achieved in understanding and predicting phase
grams of model molecular systems.1 The development of
new and more accurate statistical mechanics methods,
the increased use of computer simulation techniques, h
provided an in-depth understanding, from a molecular p
spective, of the phase behavior of systems as comple
associating substances, molecules that exhibit liqu
crystalline phases, charged molecules, and molecular ch
Unfortunately, most of the theoretical studies carried out d
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ing the last years have been concerned with the thermo
namic description of the fluid~liquid and gas! phases,
whereas little attention has been paid to the solid phase.2

From the point of view of molecular simulations, pa
tially due to the increased speed of computers, the calc
tion of the complete phase diagram of a given molecu
model can now be carried out within a reasonable amoun
time. Although brute-force computational power is essen
from a numerical perspective, the success of simulation s
ies is also due to the development of techniques for the
culation of phase equilibria.3–9

From a theoretical point of view, the understanding
the thermodynamics and phase behavior of molecular
chainlike fluids at a microscopic level has experienced
8 © 2003 American Institute of Physics
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10959J. Chem. Phys., Vol. 119, No. 20, 22 November 2003 Global phase behavior of rigid and flexible chains
enormous advance since late 1980s following the deve
ment of Wertheim’s thermodynamic perturbation theo
~TPT! for associating hard spherical fluids.10–14 In addition,
this theoretical framework, also known as the basis for
statistical associating fluid theory~SAFT! in the chemical
engineering community,15–17provides the Helmholtz free en
ergy, and the equation of state~EOS!, of fully flexible chains
of tangent spherical monomers. At the first order of appro
mation ~TPT1! the key point of the approach is that it co
cludes that all the thermodynamic properties of a chain s
tem can be obtained from knowledge of the Helmholtz f
energy and the pair radial distribution function of the sphe
cal ~monomeric! reference fluid alone. A second importa
advantage of the theory of Wertheim is its wide range
applicability to different potential models, includin
Lennard-Jones,18–22square-well,23,24and Yukawa,25 intermo-
lecular potentials. We recommend the excellent reviews
Müller and Gubbins26,27 of the SAFT approach for furthe
details.

Recently, the theory of Wertheim has been extended
Vega and MacDowell28 to describe the fluid–solid phase b
havior of fully flexible tangent hard sphere chains. The th
oretical predictions are in excellent agreement with the co
puter simulation results of Malanoski and Monson.29 In a
fully flexible tangent chain model the pair potential betwe
monomers that form the molecules~either in the same or in
different chains! is given by a spherical potential~the hard
sphere potential in this work, but the discussion is also va
for other spherical intermolecular potentials, such as
Lennard-Jones potential!, with no bending or torsional po
tentials between the monomers forming the chain~although
there is an intramolecular pair interaction between monom
of the same chain separated by more than one bond!. More
recently, the theory has also been extended to deal with
ferent fully flexible molecular models.30–34 Agreement be-
tween computer simulation and theoretical predictions,
only for the EOS of chains in the solid phase, but also for
free energies in the solid phase, shows that Wertheim’s
turbation theory constitutes a unified theoretical framew
for describing the phase behavior~including the solid phase!
of fully flexible tangent chain models.

The fully flexible chain model exhibits peculiar featur
in the solid phase that should be discussed at this stage
previously mentioned, a flexible chain model has neit
bending nor torsional potentials between the monomers
chain. Therefore there is no energetic penalty when the
oms of the chains adopt a close packed structure~such as the
face-centered-cubic or fcc close-packed structure! in which
there is an ordered arrangement of atoms, but no long-ra
orientational order of chain bond vectors.28–30This structure
is referred to as the disordered solid. Wojciechosw
et al.35,36 were the first to realize that it is likely that ordere
structures, such as those formed by layers of oriented m
ecules, do not correspond to the stable solid phases of
flexible tangent chains. The same idea has been dem
strated by Malanoski and Monson,29 who have determined
the EOS and free energies, including the fluid–solid equi
ria, of fully flexible tangent hard sphere chains with differe
chain lengths. The predictions of Vega and MacDowe28
Downloaded 07 Nov 2003 to 155.198.17.121. Redistribution subject to A
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with the extension of the theory of Wertheim for the so
phase of chain molecules are in excellent agreement w
their simulation data.

Although it is clear from the previous discussion that t
stable solid phase of the fully flexible tangent chain mode
a disordered structure, an important question arises w
comparing the ordered and disordered solid structures
fully flexible chains: Why is the stable solid phase for th
model the disordered one? Although the intermolecular in
actions provide similar values of the free energy in both s
tems, an additional term associated with the degeneracy
arises from the number of ways of arranging fully flexib
chains in a disordered solid provides a positive entropic c
tribution in the case of the flexible chains.29 This additional
term to the free energy, which can be viewed as a stabiliz
effect on the solid phase of the system, lowers the free
ergy of the disordered structure with respect to that of
ordered solid. Obviously, the entropic contribution does
exist in an ordered solid since there is only one way to
commodate them in the ordered structure.

Another model system of chain molecules, which
similar to the previous one, but exhibits a very differe
stable solid structure, is the so-called linear tangent h
sphere~LTHS! chain model. As in the flexible model, th
pair potential between monomers forming the linear cha
~belonging either to the same chain or to different chains! is
given by the hard sphere potential, but now the bond len
bond angles, and internal degrees of freedom are fixed.
important to notice that the Hamiltonian of a system of fu
flexible chains and that corresponding to linear rigid cha
are different. Also, in the first model the molecules can ad
any bond angle or torsional state, as corresponds to flex
molecules, whereas these degrees of freedom are froze
the linear rigid chain. At the first-order approximatio
~TPT1!, Wertheim’s theory does not distinguish betwe
fully flexible and linear rigid chains;14,15 it predicts the same
EOS for both models. This surprising result, supported
computer simulation data,37 holds very well in the fluid
phase of hard sphere chains. However, this is not longer
for solid phases, as has been demonstrated recently by
and co-workers. Vegaet al.38 have performed Monte Carlo
simulations and determined the EOS of LTHS chains of d
ferent chain lengths. They have found that the EOS of t
model differs considerably from that corresponding to fu
flexible chains. It is important to recall here another cruc
difference between the models: Whereas the linear r
chain model exhibits liquid-crystalline phases for cha
lengths equal or larger than five segments, the fully flexi
model presents only isotropic liquid phases. These res
have been corroborated more recently by Sanzet al.,31 who
have performed Monte Carlo simulations in the solid pha
to determine the EOS of fully flexible and linear rigi
Lennard-Jones chains.

The differences between the Hamiltonians correspond
to fully flexible and linear rigid chains are responsible for t
different solid structures exhibited by both of models: Wh
the stable structure of fully flexible chains corresponds t
disordered solid, it is expected that the stable solid struc
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10960 J. Chem. Phys., Vol. 119, No. 20, 22 November 2003 Blas et al.
of LTHS chains would be given by layers of molecules w
the chains adopting an ordered configuration in which
molecules within the same layer point in the same directi
Examples of such structures have been proposed previo
in the literature for different molecular systems.31,39–41

Although the stable solid configuration for a system
LTHS chains is known and well understood, little work h
been devoted to study the fluid–solid phase behavior of
model. Since Wertheim’s first-order perturbation theory p
dicts the same thermodynamic properties for fully flexib
and linear rigid chains, it is obvious that in its current for
the approach would not be able to predict the differen
between the thermodynamic properties of the two model
the solid phase. In order to explain the differences betw
flexible and linear rigid chains in the solid phase Vega a
McBride42 proposed a scaling relationship for the compre
ibility factor of both models. The derivation used by Veg
and McBride was rather heuristic, so that it is not complet
satisfactory from a theoretical point of view. However, t
scaling relationship was found to hold quite well in the so
phase when compared with simulation results of flexible a
linear rigid chains in the solid phase.

The goal of this work is to use the scaling proposed
Vega and McBride42 for the compressibility factor and, mor
importantly, to extend it to describe the free energy of
solid phase. The extension of the scaling to the free ener
of the solid will allow for the first time to estimate the fluid
solid equilibrium of linear tangent hard chains from a the
retical basis. Following the well-known approach
Longuet-Higgins and Widom43 ~this seminal paper has bee
reprinted recently44! also used by Paraset al.45 and by us in
a previous work,33 a segment–segment mean-field attract
contribution is incorporated both in the fluid and so
phases. The addition of a mean-field term to an accu
molecular theory yields a simple and tractable formali
and, at the same time, allows to us determine not only
liquid–solid equilibria, but also the vapor–liquid and vapo
solid phase behavior. Obviously, and due to the crude na
of the mean-field approximation, only a qualitative und
standing of the phase diagram can be obtained in such a
In this work we also address several questions involving
solid phases: do LTHS chains present a large fluid range~as
seen in the case of fully flexible chains!? Would the triple-
point temperatures of infinitely long rigid chains reach
asymptotic limit as that exhibited by fully flexible chains?

The scheme of this paper is as follows: In Sec. II t
chain models are considered and the extension of Werthe
theory to study the solid phase of fully flexible and line
rigid chains is described. Simulation details are reported
Sec. III. In Sec. IV the results for hard chains with attracti
interactions at the mean-field level of van der Waals
given, and in Sec. V the conclusions are presented.

II. MODELS AND THEORY

In this work we shall consider two molecular models
chains: fully flexible and linear rigid tangent hard sphe
chains. In the first model, the chains are flexible~i.e., there is
no restriction in either the bonding angles or in the torsio
angles!, so that each monomer of a certain chain intera
Downloaded 07 Nov 2003 to 155.198.17.121. Redistribution subject to A
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with all other monomers in the system@i.e., in the same
molecule or in other molecules with the only exception
the monomer~s! to which it is bonded# with the hard sphere
potential uref(r ). In the second model, the interactions b
tween segments are identical to those in the fully flexi
model ~i.e., the spherical segments interact through the h
sphere potential!, but as the chains are rigid, intramolecul
interactions~interactions between segments in the same m
ecule! are now irrelevant since contribution to the Ham
tonian of the system is simply a constant.

A. Brief description of Wertheim’s thermodynamic
perturbation theory

Consider a system of chains ofm tangent spherical seg
ments~monomers!, at a volumeV and temperatureT. The
spherical segments interact through a pair potentialuref(r );
in this work, we focus on spherical segments modeled
hard spheres of diameters, so thaturef(r ) is given by the
hard sphere potential. The molecules are modeled as tan
chains so that each monomer of a certain chain interacts
all other monomers in the system@i.e., in the same molecule
or in other molecules with the only exception of the mon
mer~s! to which it is bonded# with the pair potentialuref(r ).
The Helmholtz free energy of tangent hard sphere chainsA,
can be written as14,15,19

A

NkBT
5

Aideal

NkBT
1m

Ar
ref

NrefkBT
2~m21!ln yref~s!, ~1!

whereN is the number of chain molecules,kB is Boltzmann’s
constant,Aideal is the Helmholtz free energy of an ideal sy
tem of tangent chains given byNkBT$ ln(rs3)21% ~by setting
the de Broglie wavelength equal tos!, Ar

ref is the residual
free energy of the reference system formed byNref5Nm
hard sphere molecules, andyref(s) is the background corre
lation function of the reference system at contact leng
Note that in the case of monomers tangentially bond
yref(s)5gref(s), wheregref(s) is the pair radial distribution
function at contact length. The EOS of the chain systemZ,
which can be derived from Eq.~1!, is given by

Z5mZref2~m21!H 11r ref
] ln yref~s!

]r ref J , ~2!

whereZref is the compressibility factor of the reference sy
tem andr ref is the number density of hard spheres, related
the density of chains throughr ref5mr. We denote Eqs.~1!
and ~2! as Wertheim’s TPT1~Refs. 15 and 19!.

B. Fluid phase description for flexible
and linear rigid chains

It is well known that Wertheim’s TPT1 can be used
predict accurately the thermodynamic phase behavior of h
sphere chains in the fluid phase. In particular, at the first le
of approximation the theory does not distinguish betwe
fully flexible and linear rigid chains, and therefore it predic
the same EOS for a fully flexible chain and for a fully rig
chain. This surprising result holds very well for the flu
phase of hard sphere chains.37
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10961J. Chem. Phys., Vol. 119, No. 20, 22 November 2003 Global phase behavior of rigid and flexible chains
In this work we use Wertheim’s TPT114,15,19approach to
describe the fluid phase behavior of both fully flexible a
linear rigid tangent chains. As mentioned in the previo
section, in order to use the theory to predict the thermo
namic properties of the fluid phase of both models, a kno
edge of the residual free energy of the monomer hard sp
system and of its pair radial distribution function at conta
length are required. Here we give only a short summary
the main expressions.

The Carnahan–Starling EOS46

Zf
ref5

11h1h22h3

~12h!3
~3!

is used to describe the compressibility factor of the h
sphere system in the fluid phase. Hereh represents the pack
ing fraction of hard spheres, defined in the usual way,

h5
p

6
s3r ref5

p

6
s3mr. ~4!

The residual Helmholtz free energy of the system in t
phase can be easily obtained from Eq.~3! by thermodynamic
integration: i.e.,

Ar , f
ref~h!

NrefkBT
5E

0

h ~Zf
ref21!

h
dh. ~5!

The virial route can be used to obtain the pair radial dis
bution function of the system contact length,

Zf
ref5114hgf

ref~s!, ~6!

wheregf
ref(s) is the pair radial distribution function of th

reference system at contact length in the fluid phase.
Wertheim’s TPT1 predictions from Eqs.~1! and ~2! for

both fully flexible and linear rigid tangent chains in the flu
phase can be obtained using Eqs.~3!, ~5!, and~6!.

C. Solid phase description for fully flexible chains

Recently, Vega and MacDowell28 have demonstrated th
possibility of extending Wertheim’s perturbation theory
deal with solid phases of fully flexible hard sphere chains
noting that the arguments used to arrive to Wertheim’s TP
equations make no special mention of the actual nature o
phase considered. The same is true for Lennard-Jo
chains,30,31,34fully flexible hard disk chains,32 and fully flex-
ible hard chain molecules with segment–segment inte
tions treated at the mean-field level of van der Waals.33 In
summary, in order to use Wertheim’s theory to predict
thermodynamic properties of the solid phase of fully flexib
chains, only the residual free energy and the pair radial
tribution function at contact length of the reference ha
sphere system in the solid phase are required. Express
for these properties have been presented in de
elsewhere;28,33 here, we give a short summary of the ma
expressions. The residual free energy of the reference
sphere monomer in the solid phase,Ar ,s

ref , can be obtained
from the following equation:
Downloaded 07 Nov 2003 to 155.198.17.121. Redistribution subject to A
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Ar ,s
ref

NrefkBT
55.918891E

0.5450

h ~Zs
ref21!

h
dh. ~7!

Equation~7! uses thermodynamic integration to get the fr
energy of the solid phase at any volume fraction, provid
that the free energy at a reference volume fractionh50.5450
is known~its value being 5.918 89 in units ofNrefkBT). No-
tice that this is the best estimate currently available of
free energy of the hard sphere monomer in the solid phas47

All that is then needed to evaluate Eq.~7! is an expression
for the EOS of the hard sphere monomer in the solid pha
The compressibility factor of the hard sphere reference s
tem in the solid phase is well described by the EOS propo
by Hall.48 The expression of Hall is essentially a leas
squares fit to the simulation results of hard spheres obta
by Alder, and for this reason, it cannot be used for volu
fractions beyond the range of the fit. For example, the eq
tion of Hall predicts a pressure increase for decreasing d
sities in the case of packing fractions lower thath'0.46. For
this reason the Hall EOS is not recommended for pack
fractions below those of the melting of hard spheres. In vi
of this, we have decided to use a different EOS to desc
the monomer hard sphere in the solid phase. The equa
should be mathematically simple and provide a reasona
description of the hard sphere solid and without patholog
behavior at volume fractions lower than those of ha
spheres at melting. We shall use a simple expression b
on the cell theory~not the exact free volume expression
Buehler et al.,49 but a simplified expression based on t
smearing approximation50,51!. The EOS that we shall use i
this work for the hard sphere monomer solid is

Zs
ref5F12S h

hc
D 1/3G21

, ~8!

wherehc5pA2/6 is the volume fraction of hard spheres
close packing. The performance of Eq.~8! has been pre-
sented in Ref. 51 and it is seen to perform reasonably w
The pair radial distribution function of the reference syste
in the solid phase at contact length,gs

ref(s), can be obtained
using the virial route,

Zs
ref5114hgs

ref~s!. ~9!

D. Solid phase description of linear rigid chains

It is clear that the TPT1 theory of Wertheim presented
the previous section cannot be used to describe the the
dynamic phase behavior of LTHS chains in solid phase.
principle, extensions of the theory to higher orders could
developed to deal with such chains,14 but unfortunately, the
second and higher orders of the perturbation scheme of W
theim require the knowledge of the third-, fourth-, an
higher-order distribution functions of the hard sphere ref
ence system. Little is known about such complex functio
in the solid phase, so that such extensions are not possib
the moment.

Vega and McBride42 have recently proposed an altern
tive and successful procedure to use the theory of Werth
in the context of LTHS chains in solid phase. This approa
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10962 J. Chem. Phys., Vol. 119, No. 20, 22 November 2003 Blas et al.
is based on a scaling factor, which depends on the degre
freedom of the linear rigid and fully flexible chains an
which provides the pressure of rigid linear chains in terms
the pressure of fully flexible chains. IfZlinear is the compress-
ibility factor of linear rigid hard sphere chains andZflex is the
corresponding factor for fully flexible chains, the scaling
Vega and McBride42 can be written as

Zlinear5S f linear

f flex
DZflex , ~10!

wheref linear is the number of degrees of freedom of the line
rigid chains, which is equal to 5, andf flex is the number of
degrees of freedom of fully flexible chains, which is
12(m21) ~since the bond length of the model is fixed,f flex

is given by three degrees of freedom of an arbitrary atom
the model and two degrees of freedom for each of
bonds!. This results in the formula

Zlinear5S 5

312~m21! DZflex . ~11!

The scaling given by Eq.~11! due to Vega and McBride
shows excellent agreement with Monte Carlo simulat
data42 for LTHS chains when the properties of the flexib
chain are given in the TPT1 approach. Although the auth
have provided a heuristic argument within the context of
cell theory, the approach should be understood as a phen
enological rule which may help to provide an estimate of
thermodynamic phase behavior of LTHS chains in the so
phase.

Since Eqs.~10! or ~11! can be used for calculating th
EOS of linear rigid chains, it is natural to wonder whethe
could also be used to describe the global phase behavio
linear rigid chains. Noting, in this context, that an accur
EOS does not guarantee the correct prediction of the flu
solid equilibria, as the theoretical approach must also prov
good estimates for the free energies in the solid phase.
change of free energy of LTHS chains can be computed f

]~Alinear/NkBT!

]h
5

Zlinear

h
, ~12!

which indicates that the same scaling used in Eq.~10! or ~11!
can be used for thechangeof free energy of linear rigid
chains. However, in order to obtain the global phase beha
of the model system, the value of the free energy~and not
just its change with density! is needed.

The key point for calculating the absolute value of t
free energy for linear rigid chains is directly related with t
difference between the solid structures of the linear and fl
ible models. Fully flexible chains present configurational d
generacy in the solid phase, which is accounted for with
scaling proposed by Vega and McBride.42 Wertheim’s
theory—and in particular Eq.~1!—accounts implicitly for
this contribution. Suchentropic contribution to the free en
ergy arises from the existence of a number of ways of fo
ing the disordered solid, whereas there is only one way
forming an ordered solid.28,29 In other words, the configura
tion that minimizes the free energy of linear chains in t
solid phase is expected to be unique and based on a stru
Downloaded 07 Nov 2003 to 155.198.17.121. Redistribution subject to A
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of hard spheres, with the bonds of the linear molecules
hibiting long-range orientational order. Such entropic con
bution must be evaluated independently and later subtra
from Eq. ~1! in order to obtain a more accurate Helmho
free energy for linear molecules.

The degeneracy contribution of the free energy ass
ated to fully flexible chains in a disordered solid is encou
tered in the statistical mechanics of lattice models
polymers52,53 and can be accurately estimated using me
field theories, such as those of Flory54 and Huggins,55 which
provide an estimation of the configurational degeneracy o
solution of polymers in a low-molecular-weight solvent in
lattice. The Huggins estimate,55 which has been used prev
ously by Malanoski and Monson,29 is also used in this work.
The contribution to the Helmholtz free energy under th
approximation is given by29,55

Adeg

NkBT
52~m22!ln~z21!2S 12

z

2Dm ln~zm!

2S z
m

2
2m11D ln@zm22~m21!#1 ln 2, ~13!

wherez is the coordination number of the lattice, which
our case is set equal toz512 for an fcc lattice. Notice tha
the degeneracy contribution to the free energy is negat
hence making the disordered solid phase more stable.

In summary, the Helmholtz free energy of a system
linear LTHS chain molecules can be obtained following tw
steps:

~i! Subtraction of the degeneracy contribution to the fr
energy, given by Eq.~13!, from the Helmholtz free energy o
fully flexible hard sphere chains of Eq.~1!.

~ii ! Application of the scaling of Vega and McBride
given by Eq.~11!, to the result obtained in the previous ste

The final mathematical expression forAlinear, the Helm-
holtz free energy of linear rigid hard sphere chains, can
written as

Alinear

NkBT
5S 5

312~m21! D H Aflex

NkBT
2

Adeg

NkBTJ . ~14!

Other thermodynamic properties can be obtained from
previous expression using standard thermodynamic relat
ships. In particular, the compressibility factor obtained fro
this equation is identical to that given by Eq.~11!, since the
degeneracy contribution to the free energy,Adeg, is indepen-
dent of density.

E. Mean-field attractive interactions

A full description of the global phase behavior of m
lecular chains would not be complete without taking in
account the attractive interactions between the segments
form the chains. These forces need to be incorporated
the model in order to study the vapor–liquid and vapor–so
phase equilibria, in addition to the solid–liquid phase beh
ior. As mentioned in the Introduction, we follow here th
approach introduced by Longuet-Higgins and Widom33,43,44

and add a simple mean-field term to the free energies of b
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the fully flexible and LTHS chain models given by Eqs.~1!
and~14!, in the fluid and solid phases. We have already u
this approach in a previous work.33

The Helmholtz free energy due to the segment–segm
attractive interactions treated at the mean-field level of
der Waals is given by15,33

Amf

NkBT
52mhS emf

kBTD , ~15!

where emf is the integrated van der Waals mean-fie
segment–segment attractive energy.

III. SIMULATION DETAILS

The so-called close-packed structure 1~CP1!39 is used as
the equilibrium solid structure for the linear tangent ha
sphere model. In this structure the monomers of the sys
form an fcc close-packed arrangement of spheres at
maximum possible density. The molecules form layers a
the molecular axes of all the molecules point in the sa
direction. A more detailed description of the structure
given in Refs. 38 and 39. Other close-packed structure
hard diatomics were described in Ref. 39, but the differen
in free energy between different structures were found to
small. Similarly, we expect small differences for the therm
dynamic properties of different close packed structures of
LTHS model.

Recently,38 computer simulations for the LTHS model i
the solid phase withm53, 4, 5, 6 have been performed usin
the Rahman–Parrinello7 modification of the constant
pressureN-P-T Monte Carlo technique in order to allow fo
anisotropic changes of the simulation box shape8 since the
solid CP1 structure does not have cubic symmetry. The si
lation results for the equation of state were repor
elsewhere.38 In this work free energy calculations have be
performed for the LTHS in the solid phase~CP1 structure!
for m53, 4, 6. These free energy calculations allow to d
termine the fluid–solid transition of the LTHS model an
provide a test of the performance of the theory describe
this paper. The free energies of the solid phases have
calculated using the Einstein-crystal methodology.9,56 The
method used here is quite similar to the one described
previous works.39,57,58The idea is to build a reversible pat
between the solid and an ideal Einstein crystal. In the id
Einstein crystal the molecules are linked to the lattice s
with harmonic springs, and there are no intermolecular in
actions. Translational and orientational springs are used.
maximum value of the strength of the springlmax used in the
calculations was the same for both translational and orie
tional springs. We usedlmax51300, 5500, 9000 form53, 4,
6, respectively~note that the units are ofkBT/s2 for the
translational spring and ofkBT for the orientational spring!.
Fifteen different values ofl in the range 0<l<lmax were
used to connect the reference solid to the interacting Eins
crystal. The difference in free energy between the interac
Einstein crystal and the noninteracting Einstein crystal w
obtained by using umbrella sampling as described in Ref.
The length of the runs for the free energy calculations w
40 000 equilibration cycles140 000 averaging cycles. In th
Downloaded 07 Nov 2003 to 155.198.17.121. Redistribution subject to A
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case of the CP1 structure it is important to mention that
shape of the equilibrium unit cell at a given density
slightly different to that of close packing. The free ener
calculations were carried out using the equilibrium unit c
at each density. The equilibrium shape of the unit cell w
taken from our previous work~meaning that the number o
particles and the arrangement of the molecules used for
free energy calculations in this work are identical to tho
used in Ref. 38!. Once the free energy of the solid at
reference packing fractionh0 is known, the free energies a
other densities can be obtained as

As~h!

NkBT
5

As~h0!

NkBT
1E

h0

h Zs

h
dh, ~16!

whereZs is the compressibility factor of chain molecules
the solid phase. The residual free energies of the fluid ph
Ar , f can be obtained by thermodynamic integration:

Ar , f~h!

NkBT
5E

0

h ~Zf21!

h
dh, ~17!

whereZf is the compressibility factor of chain molecules
the fluid phase. The EOS of the fluid phase form54, 6 has
been reported previously.38 In the case ofm53 we perform
new simulations to determine the EOS in the fluid pha
Equation~17! is integrated in the low-density region~up to
volume fractions of about 0.10! using the virial expansion
truncated at fourth order in density~the virial coefficients of
the LTHS form53, 4, 6 were determined some time ago59!,
and for packing fractions higher than 0.10 the equation-
state simulation results are fitted to an empirical express

The fluid–solid equilibria form53 andm54 were ob-
tained by equating the chemical potentials and pressure
the fluid and solid phases. We did not evaluate the flu
solid equilibrium for m56 since liquid-crystalline phase
~nematic and smectic! are known38,60 to be present betwee
the fluid and solid phases in this case.

IV. RESULTS

We have used the expressions presented in the prev
section to obtain the phase diagram of LTHS chains incor
rating attractive interactions in the mean-field approximat
of van der Waals. We have also determined the phase be
ior of fully flexible chains, and the results corresponding
both models have been compared. The phase equilibria
tween two or three given phases have been calculated in
usual way, by equating the pressure and chemical potenti
each phase. Throughout this section we use the integr
mean-field dispersive energyemf as the unit of energy and
the hard sphere diameters of the monomers forming the
chains as the unit of length. According to this, we define
reduced temperature and pressure asT* 5kBT/emf and p*
5ps3/emf . The coexistence densities are given in terms
the packing fractionh.

Before presenting the results corresponding to the ph
behavior of fully flexible and linear rigid hard sphere chai
with segment–segment attractive interactions at the me
field level of van der Waals, we examine the solid–flu
phase behavior of linear tangent hard sphere molecule
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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different chain lengths. This is done by settingemf50 in Eq.
~15!. In Table I the theoretical predictions and simulati
results for the free energy of linear rigid hard sphere cha
in the solid phase are presented. As can be seen, the a
ment between the theory and simulation data is quite go
with deviations of about 5%. It is important to emphasi
here that the theoretical determination of the free energy
linear rigid tangent hard chains in the solid phase is not
easy task, so that the accuracy of the results of Table I jus
the use of the approximations leading to Eq.~14!. The dif-
ference in the free energy in the solid phases of the flex
chain model and the rigid linear model can be seen by c
paring the data in Table I in this work and those of Table I
Ref. 28. The comparison reveals that the free energie
flexible chains are substantially larger than those of lin
rigid chains~for instance, form54 the free energy of the
flexible chains is about twice that of the linear rigid chain!.
Moreover, the variation of the free energy of the solid pha
with chain lengthm is markedly different for the flexible and
linear rigid chains. For a given volume fraction~i.e., h! the
free energy of the flexible chains in the solid phase increa
linearly with m, whereas that of the linear rigid chains b
comes practically independent ofm for relatively small val-
ues ofm ~Ref. 42!. Notice that in the fluid phase flexible an
linear rigid chains present very similar~identical in the TPT1
approach! equations of state and free energies, which
crease linearly for increasingm. Summing up, flexible and
rigid hard chains present the same scaling for the free en
for the fluid phase, but different scaling for the free energy
the solid phase.42 The freezing behavior of both systems c
be expected to be rather different given the different beha
of the solid free energies in the solid phase.

In Fig. 1 the EOS for fully flexible and LTHS chain
with m53 are shown, including the fluid and solid phas
as well as the solid–fluid phase transition obtained from
extension of Wertheim’s theory and the computer simulati
of this work. We have also included the computer simulat
results of fully flexible hard sphere chains of Malanoski a
Monson.29 As can be seen, the EOS of both models in
fluid phase are nearly identical, as expected. However,
EOS of fully flexible and linear rigid chains in the soli
phase are dramatically different. For a given pressure,
linear rigid chains have a higher density in the solid ph

TABLE I. Helmholtz free energies for linear rigid tangent hard sphe
chains with different chain lengths corresponding to an ordered solid~la-
beled CP1 in Ref. 39! obtained from Einstein-crystal calculation
Asimul/(NkBT), and from the extension of Wertheim’s first-order thermod
namic perturbation theory,Atheory/(NkBT). The density is given in terms o
the packing fractionh5(p/6)s3r ref.

m h Asimul/(NkBT) Atheory/(NkBT)a Atheory/(NkBT)b

3 0.569 45 11.770 12.382 12.359
4 0.631 13 15.165 15.686 15.880
6 0.618 42 15.378 15.861 16.011

aObtained using the cell theory for the hard sphere reference system i
solid phase.

bObtained using the Hall EOS for the hard sphere reference system in
solid phase.
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than the flexible ones. Conversely, for a certain packing fr
tion the pressure of the flexible model is considerably hig
than that of the linear rigid one. A consequence of this sh
ing is that the solid–fluid phase transition of linear rig
chains occurs at lower pressures than those correspondin
fully flexible chains. In Fig. 2 the fluid–solid equilibrium o
flexible and linear rigid hard sphere chains withm54 is
presented. The trends are similar to those presented in F
for m53. Note, however, that in passing fromm53 to m
54, the freezing properties of flexible chains hardly chan
whereas those of linear rigid chains undergo import
changes. As can be seen, agreement between the theor
predictions and simulation data is excellent at all thermo
namic conditions, including the solid–fluid coexisting pro
erties. The message from Figs. 1 and 2 is that by using
EOS of hard spheres in the fluid phase and the EOS of h
spheres in the solid phase, it is possible to yield reason
predictions of the fluid–solid equilibrium of flexible an
LTHS chains. It is striking that all the information required
implement the theory was available forty years ago alrea

In Table II the fluid–solid coexistence properties of li
ear rigid hard chains are presented. The results for the fl
ible chain model are also presented. It can be seen
whereas the packing fraction of fully flexible chains at free
ing remains approximately constant, that of linear rig
chains decreases asm increases. The results of Table II sho
that the extension of the theory of Wertheim presented in
work is able to provide an excellent description of the soli
fluid phase transition for flexible and LTHS chains, althou
it is important to note here that linear rigid hard chai
greater thanm55 are known to exhibit liquid-crystalline

he

he

FIG. 1. EOS of fully flexible and LTHS chains withm53 in the fluid and
solid phases. The solid lines correspond to the theoretical predictions.
open circles represent molecular simulation results for fully flexible cha
taken from the literature~Ref. 29! and the open squares the simulation da
for linear rigid chains obtained in this work and taken from the literatu
~Ref. 38!. The solid symbols with horizontal dotted lines represent
fluid–solid coexistence densities and tie lines, respectively, for flex
~circles! ~Ref. 29! and linear~squares! chains obtained in this work. The
horizontal solid lines represent the theoretical predictions for the transiti
The inset shows the high-pressure behavior of the EOS in the solid ph
The reduced pressure is given asp* 5p/(kBT).
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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phase behavior in addition to the fluid–solid phase beha
studied in this work.

Once we have checked that the scaling proposed by V
and McBride42 for the EOS and the scaling proposed in th
work for the Helmholtz free energy of LTHS molecules a
able to predict accurately the solid–fluid phase transition
different chain lengths, we use the theory presented in Se
to describe the phase behavior of linear rigid chains w
segment–segment attractive interactions at the mean-
level of van der Waals. We consider first the global pha
behavior of fully flexible chains. In Fig. 3~a! the coexistence
curves of fully flexible hard chain molecules with differe
chain lengths and with segment–segment attractive inte
tions at the mean-field level are presented. As can be see

FIG. 2. EOS of fully flexible and LTHS chains withm54 in the fluid and
solid phases. The solid lines correspond to the theoretical predictions.
open circles represent molecular simulation results for fully flexible cha
taken from the literature~Ref. 29! and the open squares the simulation da
for linear rigid chains obtained in this work and taken from the literat
~Ref. 38!. The solid symbols with horizontal dotted lines represent
fluid–solid coexistence densities and tie lines, respectively, for flex
~circles! ~Ref. 29! and linear~squares! chains obtained in this work. The
horizontal solid lines represent the theoretical predictions for the transiti
The inset shows the high-pressure behavior of the EOS in the solid ph
The reduced pressure is given in asp* 5p/(kBT).
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theT-h projection, the phase diagram of fully flexible chain
is characterized by a large fluid range. In addition, the trip
point temperature reaches very rapidly an asymptotic fin
value and the solid–fluid coexistence densities become s
lar for long chain molecules. The largest increase in
solid–fluid phase behavior occurs in going from the dimer
the trimer system. It is important to note here that the tri
temperature@showed in the inset of Fig. 3~a!# is close to
constant for the chain lengths considered, although it sligh
increases as the chain length is larger. The results prese
here using the cell theory50,51 to describe the solid phase o
the hard sphere monomer are similar to those obtained
previous work with the EOS of Hall48 for the hard sphere
solid.33 The p-T projection of the phase diagram and i
log p-T representation are presented in Figs. 3~b! and 3~c!,
respectively. As can be seen, the solid–liquid melting line
almost vertical, showing a small dependence on the ch
length, as suggested by the previous figure, and indicatin
large fluid range in all cases. The temperature dependenc
the solid–vapor coexistence pressure is better seen in
log p-T representation. As can be seen, the triple press
decreases by several orders of magnitude as the chain le
increases. This is in contrast with the behavior of the tri
temperature, which is nearly constant for the chain leng
studied (m52 – 6) ~see Table III!.

The T-h projection of the phase diagram of LTH
chains with segment–segment attractive interactions at
mean-field level is presented Fig. 4~a!. Important differences
with the coexistence curves of the fully flexible chain mod
can be observed. The most striking concerns the behavio
the solid–liquid coexistence as the chain length is increas
in the case of the fully flexible chains the equilibrium curv
are practically identical~although slight density increases a
seen as the chain length is increased!, whereas in the case o
linear rigid molecules the coexistence boundaries are gre
displaced toward lower densities as the chain length is
creased, indicating that the solid phase becomes more s
than the liquid phase. A second important difference, rela
to the first one, is the behavior of the triple temperatu
which increases for larger molecules. As a consequenc
this, the liquid–vapor coexistence region becomes smalle
both the temperature and density ranges. Note that the

he
s

e

s.
se.
four

rgy,
cor-
duced
TABLE II. Fluid–solid coexistence data for fully flexible and linear rigid chains formed by three and
tangent hard sphere segments. The simulation data have been obtained from Ref. 29~fully flexible! and from
this work ~linear rigid! using the Einstein-crystal methodology for calculating the Helmholtz free ene
thermodynamic integration, andN-P-T simulations using the Rahman–Parrinello technique. The theory
responds to the predictions from the extension of Wertheim’s approach proposed in this work. The re
pressurep* is given byp* 5p/(kBT).

m Model Method h f hs p*

3 Fully flexible Simulation 0.5288 0.5864 12.90
3 Fully flexible Theory 0.5205 0.5810 12.29
4 Fully flexible Simulation 0.5289 0.5917 13.00
4 Fully flexible Theory 0.5236 0.5855 12.34

3 Linear rigid Simulation 0.4764 0.5639 7.655
3 Linear rigid Theory 0.4797 0.5861 8.296
4 Linear rigid Simulation 0.4308 0.5209 4.367
4 Linear rigid Theory 0.4252 0.5529 4.741
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10966 J. Chem. Phys., Vol. 119, No. 20, 22 November 2003 Blas et al.
phases are described with Wertheim’s TPT1, so that flex
and linear rigid chains are described by the same equat
in the fluid phase. This means that the vapor–liquid equi
ria predicted by the theory for flexible and linear rigid chai

FIG. 3. ~a! T-h, ~b! p-T, and ~c! log p-T projections of the global phas
diagram of fully flexible hard sphere chain molecules with segme
segment attractive interactions with lengthsm52 ~solid curves!, m53 ~dot-
ted curves!, m54 ~dashed curves!, m55 ~long-dashed curves!, andm56
~dot-dashed curves!. The inset in~a! shows the region close to the tripl
point.
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are identical; although differences between the vapor–liq
equilibria of flexible and linear chains must exist, they a
expected to be small. Thep-T projection of the phase dia
gram is shown in Fig. 4~b!. As can be seen, the solid–liqui
coexistence pressure is greatly displaced toward higher t
peratures as the chain length is increased, which sugg
that the ordered solid phase of linear rigid chains is m
stable than the disordered solid phase of fully flexible ch
molecules. Another noticeable difference between both m
els is that the absolute values of the solid–vapor coexiste
or sublimation pressure for linear rigid chains are seve
orders of magnitude larger than those corresponding to f
flexible chains of the same chain length. The lo
temperature coexistence pressures can be seen more c
in Fig. 4~c!, in which a logp-T representation is shown. A
can be seen, the triple-point temperature and pressure
crease as the chain length is increased, which clearly i
cates that the ordered solid phase corresponding to lin
rigid molecules becomes quite stable.

Let us now consider the phase diagrams of flexible a
linear models in the case of very long chains. In Fig. 5
phase diagram of the flexible model for longer chains is p
sented. As can be seen, the vapor–solid and fluid–solid e
libria are hardly affected by the length of the chain in th
case~in agreement with our previous work33!. This is a direct
consequence of the scaling behavior of the Helmholtz f
energy with the chain length.28,33

We have also studied the phase behavior of longer LT
chains with segment–segment attractive interactions in o
to determine the dependence of the triple-point tempera
as the chain length is increased. However, care must be t
with these results. It is well known that LTHS chain mo
ecules form liquid crystal phases form longer than 5. One
may suspect that the same must occur for rigid linear cha
presenting attractive forces. Hence it is expected that
phase diagrams presented here for longer chains will
modified when the existence of liquid-crystalline phases
explicitly considered. Although beyond the scope of th
work, it is possible that the commonly used lattice theory
liquid crystals could be incorporated in the Wertheim’s fo
malism to deal with the liquid-crystalline phases exhibit
by long LTHS chains. Unfortunately, it is not obvious to u
how to extend the theoretical treatment of this work to d
with liquid-crystalline phases. Therefore, the results p
sented here for long linear rigid chains must be regar
with care and seen as only providing first hint of how t
phase diagram would be in the absence of liquid-crys
phases.

The T-h and p-T projections of the phase diagram o
linear chains for relatively long chain lengths are shown
Fig. 6. As can be seen in Fig. 6~a!, the fluid densities at
freezing move toward lower values as the chain length
increased, producing a shrinking of the fluid region. This
due to the stabilization of the solid phase with respect to
liquid phase. As a consequence, the triple-point tempera
behaves completely different to that of the fully flexib
chains: whereas in the flexible model the triple temperat
is almost constant for the whole range of chain lengths c
sidered, the triple temperature of linear rigid chains increa
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 07 No
TABLE III. Triple and critical temperatures of fully flexible hard sphere chains with segment–segment a
tive interactions at the mean-field level of van der Waals. The liquid and solid densities~expressed in terms of
packing fractions! at the triple point and the triple temperature to critical temperature ratio are also inclu

m Tc* Tt* hs h l Tt* /Tc*

2 0.143 92 0.046 99 0.592 81 0.490 90 0.326 50
3 0.178 44 0.047 85 0.601 07 0.498 20 0.268 16
4 0.204 91 0.048 30 0.605 21 0.501 68 0.235 71
5 0.226 32 0.048 59 0.607 69 0.503 72 0.214 69
6 0.244 24 0.048 79 0.609 35 0.505 12 0.199 76
8 0.273 04 0.049 04 0.611 41 0.506 69 0.179 61
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for increasing molecular length, producing a wider range
temperatures in which the solid is in equilibrium with i
vapor. In fact, a wide liquid–vapor temperature range is s
in the fully flexible models, while linear rigid chains forme
by the same number of segments exhibit solid–vapor e
libria. For instance, a system of chains formed by seven
gent hard spheres with segment–segment attractive inte
tions at the mean-field level of van der Waals has a tri
temperature to critical temperature ratioTt /Tc , which is
equal to 0.172 for the case of fully flexible chains, indicati
a huge fluid range, and equal to 0.776 for linear molecu
indicating a narrow vapor–liquid coexistence. Note that t
ratio increases toward the limiting caseTt /Tc→1 in which
the vapor–liquid equilibria disappears because the s
phase becomes more stable that the liquid at all thermo
namic conditions. The prediction that the liquid range of l
ear rigid chains is quite small~i.e., high values ofTt /Tc) is
somewhat surprising. For this reason, work is under way
determine by computer simulation the full phase diagram
linear rigid Lennard-Jones chains.61 Preliminary results for
m53 and m55 from simulation data confirm the trend
predicted by the theory of this work.

Results corresponding to the solid–liquid, liquid–vap
and solid–vapor coexistence pressures, as functions of
perature, for LTHS chains are shown in Fig. 6~b!. As can be
seen, a similar behavior to that corresponding to sho
chains is observed. The triple-point pressure of linear ri
chains increases as the chain length is increased, in ag
ment with the results for theT-h coexistence diagrams. I
addition to thep-T projection of the phase diagram, we ha
also used a logp-T representation in order to study the solid
vapor coexistence pressures with temperature. An increa
the chain length results in a displacement of the curve for
vapor–solid pressure toward higher temperatures. It is
portant to note that these pressures are several orders of
nitude higher than the pressures corresponding to fully fl
ible chains, as expected from previous results.

The differences between the global phase diagram
fully flexible and linear rigid chains are a direct consequen
of the differences between the free energies of both syst
in the solid phase~in the present treatment the free energ
of the fluid phase are identical, so that differences in
phase diagram arise from differences in the behavior of
solid phase!. According to the theory of this work, differ
ences in the free energy of the solid phase do not arise f
the attractive forces~which in both cases are treated at t
mean-field level!, but rather in the treatment of the referen
v 2003 to 155.198.17.121. Redistribution subject to A
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repulsive hard chain. In this respect the key equation to
derstand the different phase behavior of flexible and lin
rigid chains is Eq.~14!. Flexible chains can form a disor
dered solid whereas rigid chains cannot@as taken into ac-
count by the second parenthesis on the right-hand side of
~14!#. When considering only the second term on the rig
hand side of Eq.~14! it turns out that flexible chains shoul
have lower free energy in the solid phase than linear ri
chains due to the presence of the degeneracy entropy.
this is only half of the history. Flexible and rigid chains diffe
not only in the type of solid they form, but more importantl
differ dramatically in the EOS of the solid phase, reflecti
the important fact of having different Hamiltonians~to be
flexible or to be rigid!. Looking back, probably the surprisin
feature is not that flexible and linear rigid chains pres
different EOS in the solid phase, which can be attributed
the differences in the Hamiltonians of both models, b
rather that they are so similar in the fluid phase~as can be
seen from the simulation results of Figs. 1 and 2!. Therefore,
the key term to understand why the free energy of lin
rigid chains is lower than that of flexible chains is the fir
term on the right-hand side of Eq.~14!. The reduction in the
number of degrees of freedom of the linear rigid chain@5
compared to 312(m21)] is responsible for the decrease
the compressibility factor and free energy of the linear rig
chain when compared to the flexible one. This reduction
the compressibility factor and free energy of a linear rig
chain with respect to the flexible chain is the key factor th
determines the different phase diagram of flexible and ri
chains. The reduction in the free energy of the solid phas
linear rigid chains results in an additional stability of th
solid phase and that moves the fluid densities at freezin
lower values.

Finally, we consider the phase diagram of longer LTH
chains with segment–segment attractive interactions at
mean-field level of van der Waals. TheT-h projections of
the phase diagram for molecules with chain lengthsm511,
12, 16, and 20 are shown in Fig. 7~a!. As can be seen, the
vapor–liquid coexistence becomes unstable for molecu
formed by more than 11 tangent segments.~The triple and
critical properties of a system formed by molecules with
linear rigid tangent segments are nearly identical; i.e.,Tt*
50.297 25 andpt* 50.835 3831023 and Tc* 50.305 15 and
pc* 50.999 0931023. See also Table IV for further details!
In other words, the vapor–liquid envelope lies below t
vapor–solid coexistence curve, indicating that the vapo
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 4. ~a! T-h, ~b! p-T, and ~c! log p-T projections of the global phas
diagram of LTHS chain molecules with segment–segment attractive in
actions with lengthsm53 ~dotted curves!, m54 ~dashed curves!, m55
~long-dashed curves!, and m56 ~dot-dashed curves!. The phase behavio
corresponding to dimers (m52) is also included~solid curves!.
Downloaded 07 Nov 2003 to 155.198.17.121. Redistribution subject to A
liquid equilibria is metastable with respect to the solid pha
For longer chains,m>12, linear rigid chains exhibit solid–
fluid equilibria only. We have also obtained the coexisten
pressure corresponding to the systems studied in Fig. 7~a!.
As can be seen in Fig. 7~b!, the coexistence pressures mo
toward higher temperatures as the chain length is increa
A change in curvature is seen for a system formed by lin
rigid chains withm512 ~and also form516, although with
a lower change! in the region close to the critical region o
chains with m511, probably due to the presence of th
metastable vapor–liquid coexistence. The extent of the fl
range for increasing chain lengths in the rigid and flexib
models is summarized in Fig. 8. The calculated critical te
peratures and triple temperatures@Fig. 8~a!# and the corre-
sponding pressures@Fig. 8~b!# are considered. In these rep
resentations the disappearance of the fluid range for r
chains longer thanm511 is suggested by the intersection
the curve of the critical points and the line of the trip
points. The markedly different dependence of the triple-po
conditions with increasing chain lengths in the rigid and fle
ible model is also highlighted. The triple-point temperatur
increase linearly with increasing chain length in the case
the rigid model, while a close-to-constant behavior is fou
for the flexible model; in this case, the curves of critical a
triple-point conditions do not intersect.

V. CONCLUSIONS

The global ~solid–liquid, vapor–liquid, and solid–
vapor! phase behavior of fully flexible and linear rigid har
sphere chains with segment–segment attractive interact
at the mean-field level of van der Waals has been obtai
using Wertheim’s first-order thermodynamic perturbati
theory.

An extension of the original TPT1 theory of Werthei
has been proposed to describe the solid phase of linear

r-

FIG. 5. T-h projection of the global phase diagram of fully flexible ha
sphere molecules with segment–segment attractive interactions with len
m52 ~solid curves! andm58 ~dotted curves!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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hard chain molecules. The theoretical framework, which
based on the scaling proposed recently by Vega
McBride,42 provides an accurate description of the EOS
the system in the whole range of solid densities for differ
chain lengths. The scaling of the Helmholtz free energy ta
into account explicitly the ordered nature of the solid stru
ture corresponding to linear rigid chains.

In order to test the theoretical extension of the theory,
have determined by computer simulation~using the Einstein-
crystal methodology! the Helmholtz free energy of LTHS
chain molecules of three different chain lengths. This
lowed the determination of the fluid–solid equilibrium
linear rigid chains withm53 and 4. It has been found tha
the EOS and free energies of flexible and linear rigid cha
are quite different in the solid phase. The theory propose
this work provides a good description of the EOS and f
energy for both flexible and linear rigid chains and is able
predict reasonably well the fluid–solid equilibrium of bo
models. It is striking that all that is needed to develop
theory for the fluid–solid equilibrium of hard sphere chai

FIG. 6. ~a! T-h and ~b! p-T projections of the global phase diagram
LTHS chain molecules with segment-segment attractive interactions
lengthsm57 ~dotted curves!, m58 ~dashed curves!, m59 ~long-dashed
curves!, andm510 ~dot-dashed curves!. The phase behavior correspondin
to dimers (m52) is also included~solid curves!. The inset of~b! also
includes a logp-T representation of the coexistence pressure vs tempera
Downloaded 07 Nov 2003 to 155.198.17.121. Redistribution subject to A
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~flexible or rigid! is an EOS of hard sphere monomers in t
fluid and in the solid phase.

The extension of Wertheim’s perturbation theory is a
used to study the phase behavior of linear chains w
segment–segment attractive interactions treated at the m
field level of van der Waals. In this sense the results p
sented here constitute the natural extension of the sem
work of Longuet-Higgins and Widom.43,44

The effect of increasing the chain length for linear rig
models is to move the coexistence densities of the fl
phase at freezing to lower values. The most noticeable ef
of this behavior is the strong increase in the triple-point te
perature and pressure as the chain length is increased. D
this, the vapor–liquid coexistence region is greatly d
creased. At temperatures below the triple point, the so
densities at coexistence move toward higher densities as
chain length is increased.

The behavior observed for LTHS chains is also co
pared with that corresponding to fully flexible molecules.

th

re.

FIG. 7. ~a! T-h projection and~b! log p-T representation of the global phas
diagram of LTHS chain molecules with segment–segment attractive in
actions with lengthsm511 ~dotted curves!, m512 ~dashed curves!, m
516 ~long-dashed curves!, andm520 ~dot-dashed curves!. The phase be-
havior corresponding to dimers (m52) is also included~solid curves!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 07 No
TABLE IV. Triple-point properties of linear rigid hard chains with a mean-field attractive contribution
obtained from the extension of Wertheim’s perturbation theory for the fluid and solid phases. The coex
densities of the solid, liquid, and vapor phases at the triple point are denoted in terms of packing fractiohs ,
h l , andhv , respectively. The critical pressure and temperature of the chains considered are also inclu

m Tt* pt* Tc* pc* hs h l hv

3 0.064 40 0.334 4931027 0.178 44 0.365 0431022 0.619 44 0.441 93 0.815 8731026

4 0.094 21 0.127 5831025 0.204 91 0.280 8931022 0.605 62 0.370 27 0.283 8931024

5 0.124 44 0.225 4331024 0.226 32 0.227 4531022 0.596 50 0.313 34 0.225 3431023

6 0.154 68 0.424 9331024 0.244 24 0.189 8231022 0.590 27 0.265 82 0.884 3431023

7 0.184 68 0.112 3431023 0.259 61 0.161 9731022 0.586 01 0.224 71 0.236 8431022

8 0.214 28 0.230 4931023 0.273 04 0.140 8931022 0.583 16 0.187 92 0.508 8831022

9 0.243 38 0.400 4031023 0.284 90 0.124 3031022 0.581 36 0.153 68 0.964 0331022

10 0.271 94 0.621 4231023 0.295 52 0.110 9031022 0.580 32 0.119 86 0.173 7231021

11 0.299 94 0.889 2231023 0.305 15 0.999 0931023 0.579 88 0.079 88 0.034 23
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the latter system, the solid–liquid and solid–vapor phase
havior is not very sensitive to chain length changes, and
phase boundaries reach very rapidly an asymptotic beha

FIG. 8. Theoretical predictions for the critical and triple~a! temperatures
and~b! pressures of fully flexible and linear rigid chains as functions of
chain length. The open circles represent the critical properties of fully fl
ible and linear rigid chains, the open squares the triple point propertie
LTHS chains, and the solid squares the triple point properties of fully fl
ible molecules. The dotted curves are just guides to the eye.
v 2003 to 155.198.17.121. Redistribution subject to A
e-
e

ior

as the chain length is increased. In particular, very sm
differences are observed for chains formed by more than
segments. Due to this behavior of the phase boundaries
triple-point temperatures and pressures, as well as the cri
properties, reach asymptotic limits.

The differences between the phase diagrams of fu
flexible and linear rigid chain molecules are due to two fa
tors: namely, the different type of solid they may form a
the different scaling of the EOS and free energy of the so
phase that results from the difference in the Hamilton
~one model is flexible while the other is rigid!. Both contri-
butions are accounted for in Eq.~14!, although in an approxi-
mate way; this is probably one of the main contributions
this work. The different scaling means that for fully flexib
chains the fluid–solid equilibrium is hardly affected by th
length of the chains, whereas for the linear rigid model
fluid–solid equilibrium changes strongly with the length
the chain.

We have also considered long chain lengths in the lin
rigid chain model in order to observe the effect of the sta
lization effect of the solid phase on the vapor–liquid pha
behavior. As the chains become larger, the solid–liq
boundaries move toward lower densities, making the vap
liquid coexistence region smaller. For linear rigid chai
formed by more than 11 segments, the solid phase beco
so stable with respect to the liquid that the vapor–liqu
coexistence becomes unstable and no stable vapor–li
equilibria is observed form.11. In other words, for linear
rigid chains with more than 11 segments, the system o
exhibits solid–vapor phase behavior. Care must be tak
however, with respect to the results corresponding to th
long linear rigid chains. It is well known that such a mod
when only repulsions are taken into account, exhibits liqu
crystalline phases. Unfortunately, the simplified theoreti
description presented here cannot be extended in a sim
way to deal with liquid-crystalline phases. Here our aim w
rather to illustrate a possible scenario of the phase diagram
flexible and linear rigid chains based on a simplified tre
ment. This work suggests that the analysis of the phase
gram of linear rigid chains may yield some surprises~ex-
traordinary high values ofTt /Tc and, therefore, very smal
liquid ranges!. This is certainly a problem which would b
worth looking into in order to gain a better understanding
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-
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the role of molecular flexibility on the global phase behav
of molecular chains.
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