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An extension of Wertheim’s first-order thermodynamic perturbation theory is proposed to describe
the global phase behavior of linear rigid tangent hard sphere chains. The extension is based on a
scaling proposed recently by Vega and McBri@ys. Rev. 65, 052501(2002] for the equation

of state of linear chains in the solid phase. We have used the Einstein-crystal methodology, the
Rahman—Parrinello technique, and the thermodynamic integration method for calculating the free
energy and equation of state of linear rigid hard sphere chains with different chain lengths, including
the solid—fluid phase equilibria. Agreement between the simulation data and theoretical predictions
is excellent in all cases. Once it is confirmed that the proposed theory can be used to describe
correctly the equation of state, free energy, and solid—fluid phase transitions of linear rigid
molecules, a simple mean-field approximation at the level of van der Waals is included to account
for segment—segment attractive interactions. The approach is used to determine the global phase
behavior of fully flexible and linear rigid chains of varying chain lengths. The main effect of
increasing the chain length in the case of linear rigid chains is to decrease the fluid densities at
freezing, so that the triple-point temperatures increase. As a consequence, the range of temperatures
where vapor-liquid equilibria exist decreases considerably with chain length. This behavior is a
direct result of the stabilization of the solid phase with respect to the liquid phase as the chain length
is increased. The vapor-liquid equilibria are seen to disappear for linear rigid chains formed by
more than 11 hard sphere segments that interact through an attractive van der Waals mean-field
contribution; in other words, long linear rigid chains exhibit solid—vapor phase behavior only. In the
case of flexible chains, the fluid—solid equilibrium is hardly affected by the chain length, so that the
triple-point temperature reaches quickly an asymptotic value. In contrast to linear rigid chains,
flexible chains present quite a broad range of temperatures where vapor—liquid equilibria exist.
Although the vapor-liquid equilibria of flexible and linear rigid chain molecules are similar, the
differences in the type of stable solid they form and, more importantly, the differences in the scaling
of thermodynamic properties with chain length bring dramatic differences to the appearance of their
phase diagrams. @003 American Institute of Physic§DOI: 10.1063/1.1619936

I. INTRODUCTION ing the last years have been concerned with the thermody-
namic description of the fluidliquid and ga phases,

During the last two decades, considerable advance hav?hereas little attention has been paid to the solid phase.

been achieved in understanding and predictin hase dia- ) . . :
g b gp From the point of view of molecular simulations, par-

grams of model molecular systethdhe development of v d he i q d of h cul
new and more accurate statistical mechanics methods, aﬁ!&' y due to the increased speed of computers, the calcula-

the increased use of computer simulation techniques, ha¥n ©Of the complete phase diagram of a given molecular

provided an in-depth understanding, from a molecular permodel can now be carried out within a reasonable amount of

spective, of the phase behavior of systems as complex déne. Although brute-force computational power is essential
associating substances, molecules that exhibit quuidfrom a numerical perspective, the success of simulation stud-
crystalline phases, charged molecules, and molecular chain€s is also due to the development of techniques for the cal-
Unfortunately, most of the theoretical studies carried out durculation of phase equilibri&®

From a theoretical point of view, the understanding of
dauthor to whom correspondence should be addressed. F&¢ 959 the thermodynamics and phase behavior of molecular and
019777; Electronic mail: Felipe.Jimenez@dfaie.uhu.es chainlike fluids at a microscopic level has experienced an

0021-9606/2003/119(20)/10958/14/$20.00 10958 © 2003 American Institute of Physics

Downloaded 07 Nov 2003 to 155.198.17.121. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 119, No. 20, 22 November 2003 Global phase behavior of rigid and flexible chains 10959

enormous advance since late 1980s following the developwith the extension of the theory of Wertheim for the solid
ment of Wertheim’s thermodynamic perturbation theoryphase of chain molecules are in excellent agreement with
(TPT) for associating hard spherical fluifs:** In addition,  their simulation data.

this theoretical framework, also known as the basis for the  Although it is clear from the previous discussion that the
statistical associating fluid theofBAFT) in the chemical stable solid phase of the fully flexible tangent chain model is
engineering community,~*” provides the Helmholtz free en- a disordered structure, an important question arises when
ergy, and the equation of staieO9, of fully flexible chains  comparing the ordered and disordered solid structures of
of tangent spherical monomers. At the first order of approxifully flexible chains: Why is the stable solid phase for this
mation (TPTY) the key point of the approach is that it con- model the disordered one? Although the intermolecular inter-
cludes that all the thermodynamic properties of a chain sysactions provide similar values of the free energy in both sys-
tem can be obtained from knowledge of the Helmholtz freeiems, an additional term associated with the degeneracy that
energy and the pair radial distribution function of the Spheri-arises from the number of ways of arranging fu”y flexible
cal (monomeri¢ reference fluid alone. A second important chains in a disordered solid provides a positive entropic con-
advantage of the theory of Wertheim is its wide range oftripytion in the case of the flexible chaifsThis additional
applicability to different potential models, including term to the free energy, which can be viewed as a stabilizing
Lennard-Joneg‘zzsquare-wellz,3’24and Yukawa? intermo- effect on the solid phase of the system, lowers the free en-
lecular potentials. W(;recommend the excellent reviews ofygy of the disordered structure with respect to that of the
Miiller and Gubbin&*’ of the SAFT approach for further odered solid. Obviously, the entropic contribution does not

details. _ exist in an ordered solid since there is only one way to ac-
Recently, the theory of Wertheim has been extended by mmodate them in the ordered structure.

Vega and MacDowelf to describe the fluid—solid phase be-  pnother model system of chain molecules, which is
havior of fully flexible tangent hard sphere chains. The theinjar to the previous one, but exhibits a very different
oretical predictions are in excellent agreement with the coMgi,p1e solig structure, is the so-called linear tangent hard
puter S|mulat|on results_of Malanoski gnd Mon_§8r1n a sphere(LTHS) chain model. As in the flexible model, the
fully flexible tangent chain model th_e pair potential betvv_eenpair potential between monomers forming the linear chains
MONOMErs that form the moleculé&t_her in the Same orin (belonging either to the same chain or to different chaiss
different cham_}s IS given by a spherlca_l pote|_'1t|al_he hard . given by the hard sphere potential, but now the bond length,
sphere potentlaI. n th|s work, but the d'SCU.SS'OH Is also ValIIcgond angles, and internal degrees of freedom are fixed. It is
for other spherical mtermolecular pqtennals, su ch as th?mportant to notice that the Hamiltonian of a system of fully
Lennard-Jones potentjalwith no bending or torsional po-

. . . flexible chains and that corresponding to linear rigid chains
tentials between the monomers forming the chaiithough . . . P 9 9

: : . . are different. Also, in the first model the molecules can adopt

there is an intramolecular pair interaction between monomers

of the same chain separated by more than one Yodvidre any bond angle or torsional state, as corresponds to flexible

recently, the theory has also been extended to deal with dnr_nolecules, whereas these degrees of freedom are frozen in

ferent fully flexible molecular modef®~3* Agreement be- t:]'i'rhlr;e?/(/ rf[?]'d. ?hatlr? - AL ;he fwst;o(rquetr ap'pLoxtl)mt;a:;lon
tween computer simulation and theoretical predictions, no  Yvermeims heory does ,?%. ISINGUISh between
ully flexible and linear rigid chain&**°it predicts the same

only for the EOS of chains in the solid phase, but also for th 0S for both models. Thi o I d b
free energies in the solid phase, shows that Wertheim'’s peE or 0,t r’lno. € S'd éshSllj(;prlsmg reSl|J| tf sutﬁ)pofrltgd y
turbation theory constitutes a unified theoretical frameworkCOMPUter simulation datd, holds very well in the flul

for describing the phase behaviancluding the solid phage phase_of hard sphere chains. However, this is not longer true
of fully flexible tangent chain models. for solid phases, as has been demonstrated recently by Vega

38
The fully flexible chain model exhibits peculiar features 21d co-workers. Vegat al™ have performed Monte Carlo

in the solid phase that should be discussed at this stage. Aimulations and determined the EOS of LTHS chains of dif-

previously mentioned, a flexible chain model has neithef€rent chain lengths. They have found that the EOS of this
bending nor torsional potentials between the monomers in gtodel differs considerably from that corresponding to fully
chain. Therefore there is no energetic penalty when the aflexible chains. It is important to recall here another crucial
oms of the chains adopt a close packed strudtsueh as the difference between the models: Whereas the linear rigid
face-centered-cubic or fcc close-packed strugtimewhich chain model exhibits liquid-crystalline phases for chain
there is an ordered arrangement of atoms, but no long-rand@ngths equal or larger than five segments, the fully flexible
orientational order of chain bond vectdfs > This structure ~Model presents only isotropic liquid phases. These results
is referred to as the disordered solid. Wojciechoswskiave been corroborated more recently by Seinal,*' who

et al®>3®were the first to realize that it is likely that ordered have performed Monte Carlo simulations in the solid phase
structures, such as those formed by layers of oriented moto determine the EOS of fully flexible and linear rigid
ecules, do not correspond to the stable solid phases of fullikennard-Jones chains.

flexible tangent chains. The same idea has been demon- The differences between the Hamiltonians corresponding
strated by Malanoski and Monséhwho have determined to fully flexible and linear rigid chains are responsible for the
the EOS and free energies, including the fluid—solid equilib-different solid structures exhibited by both of models: While
ria, of fully flexible tangent hard sphere chains with differentthe stable structure of fully flexible chains corresponds to a
chain lengths. The predictions of Vega and MacDoffell disordered solid, it is expected that the stable solid structure
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of LTHS chains would be given by layers of molecules withwith all other monomers in the systefne., in the same
the chains adopting an ordered configuration in which allmolecule or in other molecules with the only exception of
molecules within the same layer point in the same directionthe monome(s) to which it is bondediwith the hard sphere
Examples of such structures have been proposed previouspotentialu™/(r). In the second model, the interactions be-
in the literature for different molecular systefts®#! tween segments are identical to those in the fully flexible
Although the stable solid configuration for a system ofmodel(i.e., the spherical segments interact through the hard
LTHS chains is known and well understood, little work hassphere potentigl but as the chains are rigid, intramolecular
been devoted to study the fluid—solid phase behavior of thigteractionginteractions between segments in the same mol-
model. Since Wertheim’s first-order perturbation theory pre-ecule are now irrelevant since contribution to the Hamil-
dicts the same thermodynamic properties for fully flexibletonian of the system is simply a constant.
and linear rigid chains, it is obvious that in its current form
the approach would not be able to predict the difference
between the thermodynamic properties of the two models i
the solid phase. In order to explain the differences between Consider a system of chains wftangent spherical seg-
flexible and linear rigid chains in the solid phase Vega andnents(monomers at a volumeV and temperaturd. The
McBride*? proposed a scaling relationship for the compressSpherical segments interact through a pair potenti(r);
ibility factor of both models. The derivation used by Vegain this work, we focus on spherical segments modeled as
and McBride was rather heuristic, so that it is not completelyhard spheres of diameter, so thatu'/(r) is given by the
satisfactory from a theoretical point of view. However, the hard sphere potential. The molecules are modeled as tangent
scaling relationship was found to hold quite well in the solid chains so that each monomer of a certain chain interacts with

phase when compared with simulation results of flexible and!l other monomers in the systefire., in the same molecule

linear rigid chains in the solid phase. or in other molecules with the only exception of the mono-
The goal of this work is to use the scaling proposed bymer(s) to which it is bondediwith the pair potential™{(r).

Vega and McBrid& for the compressibility factor and, more The Helmholtz free energy of tangent hard sphere chéins,

importantly, to extend it to describe the free energy of thecan be written a$>*?

solid phase. The extension of the scaling to the free energies A Aideal ATef

of the solid will allow for the first time to estimate the fluid— = +m—

solid equilibrium of linear tangent hard chains from a theo- NkgT NkgT N'efkgT

retical basis. Following the well-known approach of

Longuet-Higgins and Widofii (this seminal paper has been constantA®e? is the Helmholtz free energy of an ideal sys-

reprmt_ed recentlgf‘) also used by Parast al. anq by us N tem of tangent chains given byks T{In(po)— 1} (by setting

a previous work? a segment—segment mean-field attractive, . e Broglie wavelength equal t9, A is the residual
contribution is incorporated both in the fluid and solid ¢ energy of the reference system frormed NS§'= Nm
phases. The addition of a mean-field term to an accuralg, sphere molecules, agf() is the background corre-
molecular theory y_|elds a simple and tract_able formalisMyaiion function of the reference system at contact length.
a_md_, at th_e same time, allows to us deter_m|r_1e not only thgygte that in the case of monomers tangentially bonded,
liquid—solid equilibria, but also the vapor—liquid and Vapor—lyref(o_):gref(o,) whereg™®{() is the pair radial distribution

solid phase behavior. Obviously, and due to the crude natu Binction at contact length. The EOS of the chain syst&m
of thg mean-field approximation, only a q_ualltgtwe under-, vioh can be derived from Edd), is given by
standing of the phase diagram can be obtained in such a way.

alny'( 0')]

A. Brief description of Wertheim’s thermodynamic
Eerturbation theory

—(m=1)Iny"*(a), @

whereN is the number of chain moleculds; is Boltzmann'’s

In this work we also address several questions involving the of of

solid phases: do LTHS chains present a large fluid rdage Z=mZ¢-(m-1)} 1+p PZ

seen in the case of fully flexible chaj@sWould the triple- P

point temperatures of infinitely long rigid chains reach anwhereZ™ is the compressibility factor of the reference sys-

asymptotic limit as that exhibited by fully flexible chains? tem andp''is the number density of hard spheres, related to
The scheme of this paper is as follows: In Sec. Il thethe density of chains through!®'=mp. We denote Eqs(1)

chain models are considered and the extension of Wertheim&nd (2) as Wertheim's TPT1Refs. 15 and 19

theory to study the solid phase of fully flexible and linear

rigid chains is described. Simulation details are reported in

Sec. lll. In Sec. IV the results for hard chains with attractiveB. Fluid phase description for flexible

interactions at the mean-field level of van der Waals areand linear rigid chains

given, and in Sec. V the conclusions are presented.

)

It is well known that Wertheim’s TPT1 can be used to
predict accurately the thermodynamic phase behavior of hard
sphere chains in the fluid phase. In particular, at the first level

In this work we shall consider two molecular models of of approximation the theory does not distinguish between
chains: fully flexible and linear rigid tangent hard spherefully flexible and linear rigid chains, and therefore it predicts
chains. In the first model, the chains are flexitle., there is  the same EOS for a fully flexible chain and for a fully rigid
no restriction in either the bonding angles or in the torsionakhain. This surprising result holds very well for the fluid
angles, so that each monomer of a certain chain interactgphase of hard sphere chaifis.

Il. MODELS AND THEORY
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In this work we use Wertheim's TPT4*approach to Aref . (21
describe the fluid phase behavior of both fully flexible and —°_ =5.91889 > d7. 7)
linear rigid tangent chains. As mentioned in the previous N KgT 0.5450 7

secti.on, in ordgr to use th_e theory to predict the thermOdyEquation(?) uses thermodynamic integration to get the free
namic properties of the fluid phase of both models, a knowl-energy of the solid phase at any volume fraction, provided

edge of the residual free energy of the monomer hard Sphe'iﬁat the free energy at a reference volume fractjer0.5450
system and of its pair radial distribution function at contact;g known (its value being 5.918 89 in units &fksT). No-

length are required. Here we give only a short summary ot
the main expressions.
The Carnahan-Starling E&S

ice that this is the best estimate currently available of the
free energy of the hard sphere monomer in the solid pffase.
All that is then needed to evaluate H{) is an expression
for the EOS of the hard sphere monomer in the solid phase.
(3)  The compressibility factor of the hard sphere reference sys-
(1-9)° tem in the solid phase is well described by the EOS proposed
Oby Hall.*® The expression of Hall is essentially a least-
squares fit to the simulation results of hard spheres obtained
by Alder, and for this reason, it cannot be used for volume
fractions beyond the range of the fit. For example, the equa-
T o oef T 3 tion of Hall predicts a pressure increase for decreasing den-
N=go P =g Mp. (4 sities in the case of packing fractions lower thet0.46. For
this reason the Hall EOS is not recommended for packing
The residual Helmholtz free energy of the system in thisfractions below those of the melting of hard spheres. In view
phase can be easily obtained from E2).by thermodynamic  of this, we have decided to use a different EOS to describe

et LYt =’
A A i

is used to describe the compressibility factor of the har
sphere system in the fluid phase. Hereepresents the pack-
ing fraction of hard spheres, defined in the usual way,

integration: i.e., the monomer hard sphere in the solid phase. The equation
ref ref should be mathematically simple and provide a reasonable
Arilm) _ (7(Z7—1) d 5 description of the hard sphere solid and without pathological
ref, N - ( ) . .
N"kgT Jo 7 behavior at volume fractions lower than those of hard

o ) . ~ _spheres at melting. We shall use a simple expression based
The virial route can be used to obtain the pair radial distri-gpy the cell theory(not the exact free volume expression of
bution function of the system contact length, Buehler et al,*® but a simplified expression based on the
2114 4pg( o), g  Smearing approximatih®). The EOS that we shall use in
f 791 (@) © this work for the hard sphere monomer solid is
whereg¥(o) is the pair radial distribution function of the I
reference system at contact length in the fluid phase. Zref:[l_ (i) } , (8
Wertheim's TPT1 predictions from Eqél) and (2) for s e
both fully flexible and linear rigid tangent chains in the fluid

phase can be obtained using E®, (5), and (6). where 7.= m/2/6 is the volume fraction of hard spheres at

close packing. The performance of E®) has been pre-
sented in Ref. 51 and it is seen to perform reasonably well.
The pair radial distribution function of the reference system
C. Solid phase description for fully flexible chains in the solid phase at contact lengt{¥(o), can be obtained

Recently, Vega and MacDow&llhave demonstrated the using the vinal route,

possibility of extending Wertheim's perturbation theory to  zref_ 1 4, g1l ). ©)
deal with solid phases of fully flexible hard sphere chains by

noting that the arguments used to arrive to Wertheim’'s TPT
equations make no special mention of the actual nature of th
phase considered. The same is true for Lennard-Jones Itis clear that the TPT1 theory of Wertheim presented in
chains®*3-34ylly flexible hard disk chaind? and fully flex-  the previous section cannot be used to describe the thermo-
ible hard chain molecules with segment—segment interacdynamic phase behavior of LTHS chains in solid phase. In
tions treated at the mean-field level of van der Wa2lm  principle, extensions of the theory to higher orders could be
summary, in order to use Wertheim’s theory to predict thedeveloped to deal with such chaitfsbut unfortunately, the
thermodynamic properties of the solid phase of fully flexiblesecond and higher orders of the perturbation scheme of Wer-
chains, only the residual free energy and the pair radial distheim require the knowledge of the third-, fourth-, and
tribution function at contact length of the reference hardhigher-order distribution functions of the hard sphere refer-
sphere system in the solid phase are required. Expressioesice system. Little is known about such complex functions
for these properties have been presented in detaih the solid phase, so that such extensions are not possible at
elsewhereé®33 here, we give a short summary of the mainthe moment.

expressions. The residual free energy of the reference hard Vega and McBrid& have recently proposed an alterna-
sphere monomer in the solid phask{f;, can be obtained tive and successful procedure to use the theory of Wertheim
from the following equation: in the context of LTHS chains in solid phase. This approach

. Solid phase description of linear rigid chains
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is based on a scaling factor, which depends on the degrees of hard spheres, with the bonds of the linear molecules ex-
freedom of the linear rigid and fully flexible chains and hibiting long-range orientational order. Such entropic contri-
which provides the pressure of rigid linear chains in terms obution must be evaluated independently and later subtracted
the pressure of fully flexible chains. &, is the compress- from Eq. (1) in order to obtain a more accurate Helmholtz
ibility factor of linear rigid hard sphere chains a#dg, is the  free energy for linear molecules.
corresponding factor for fully flexible chains, the scaling of The degeneracy contribution of the free energy associ-
Vega and McBrid& can be written as ated to fully flexible chains in a disordered solid is encoun-
tered in the statistical mechanics of lattice models of
Zp o= (f'mear) Zios (10 polymers?°3 and can be accurately estimated using mean-
ffiex field theories, such as those of Flehand Huggins? which
provide an estimation of the configurational degeneracy of a
solution of polymers in a low-molecular-weight solvent in a
lattice. The Huggins estimatéwhich has been used previ-
ously by Malanoski and Monsdii,is also used in this work.
The contribution to the Helmholtz free energy under this
proximation is given k>

wheref e IS the number of degrees of freedom of the linear
rigid chains, which is equal to 5, arfde, is the number of
degrees of freedom of fully flexible chains, which is 3
+2(m—1) (since the bond length of the model is fixdg,y

is given by three degrees of freedom of an arbitrary atom in
the model and two degrees of freedom for each of the ap

bonds. This results in the formula Adeg z
. NkBT——(m—Z)In(z—l)— 1—5 min(zm)
Zjinear= m) Zijex - (11) 0
- 25— m+1|In[zm-2(m—1)]+In2, (13

The scaling given by Eq(1l) due to Vega and McBride

ShOV\QS excellent agreement with Monte Carlo simulationyherez is the coordination number of the lattice, which in
datd? for LTHS chains when the properties of the flexible our case is set equal =12 for an fcc lattice. Notice that
chain are given in the TPT1 approach. Although the authorgne degeneracy contribution to the free energy is negative,
have provided a heuristic argument within the context of thehence making the disordered solid phase more stable.
cell theory, the approach should be understood as a phenom- |y summary, the Helmholtz free energy of a system of
enological rule which may help to provide an estimate of thejinear LTHS chain molecules can be obtained following two
thermodynamic phase behavior of LTHS chains in the solicsteps:
phase. (i) Subtraction of the degeneracy contribution to the free
Since Eqs(10) or (11) can be used for calculating the energy, given by Eq(13), from the Helmholtz free energy of
EQS of linear rigid chains, it is natural to wonder whether itfy|ly flexible hard sphere chains of E(L).
could also be used to describe the global phase behavior of (jj) Application of the scaling of Vega and McBride,
linear rigid chains. Noting, in this context, that an accurategiven by Eq.(11), to the result obtained in the previous step.
EOS does not guarantee the correct prediction of the fluid—  The final mathematical expression .., the Helm-
solid equilibria, as the theoretical approach must also provideotz free energy of linear rigid hard sphere chains, can be
good estimates for the free energies in the solid phase. Thgyitten as
change of free energy of LTHS chains can be computed from
S) Aflex Adeg
- : (14)

linear
I(Ajinear/ NKgT) _ Ziinear (12) NksT
a7 n

Other thermodynamic properties can be obtained from the
which indicates that the same scaling used in@@) or (11)  previous expression using standard thermodynamic relation-
can be used for thehangeof free energy of linear rigid ships. In particular, the compressibility factor obtained from
chains. However, in order to obtain the global phase behaviathis equation is identical to that given by EdJ1), since the
of the model system, the value of the free enef@yd not  degeneracy contribution to the free enemyq, is indepen-
just its change with densityis needed. dent of density.

The key point for calculating the absolute value of the
free energy for linear rigid chains is directly related with the
difference between the solid structures of the linear and flex-
ible models. Fully flexible chains present configurational de-
generacy in the solid phase, which is accounted for with the A full description of the global phase behavior of mo-
scaling proposed by Vega and McBritfe.Wertheim’s lecular chains would not be complete without taking into
theory—and in particular Eq(l)—accounts implicitly for account the attractive interactions between the segments that
this contribution. Suclentropic contribution to the free en- form the chains. These forces need to be incorporated into
ergy arises from the existence of a number of ways of formthe model in order to study the vapor—liquid and vapor—solid
ing the disordered solid, whereas there is only one way ophase equilibria, in addition to the solid—liquid phase behav-
forming an ordered soli®??° In other words, the configura- ior. As mentioned in the Introduction, we follow here the
tion that minimizes the free energy of linear chains in theapproach introduced by Longuet-Higgins and Widdf{44
solid phase is expected to be unique and based on a structuaad add a simple mean-field term to the free energies of both

E. Mean-field attractive interactions
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the fully flexible and LTHS chain models given by Ed$) case of the CP1 structure it is important to mention that the
and(14), in the fluid and solid phases. We have already usedghape of the equilibrium unit cell at a given density is
this approach in a previous work. slightly different to that of close packing. The free energy
The Helmholtz free energy due to the segment—segmenmalculations were carried out using the equilibrium unit cell
attractive interactions treated at the mean-field level of varat each density. The equilibrium shape of the unit cell was
der Waals is given by-=3 taken from our previous workmeaning that the number of
AMf c particles and the arrangement of the molecules used for the
I _m,7<_mf (15) free energy calculations in this work are identical to those
NkgT keT used in Ref. 38 Once the free energy of the solid at a

where e, is the integrated van der Waals mean-fieldreference packing fraction, is known, the free energies at

segment—segment attractive energy. other densities can be obtained as
Adn) A nZ
(7 _ s(770) +f _Sd"], (16)
IIl. SIMULATION DETAILS NksT  NkgT = Jy 7

The so-called close-packed structureCP1)*%is used as WhereZg is the compressibility factor of chain molecules in
the equilibrium solid structure for the linear tangent hardthe solid phase. The residual free energies of the fluid phase
sphere model. In this structure the monomers of the systerfi; ¢ can be obtained by thermodynamic integration:
form an fcc close-packed arrangement of spheres at the A, «(7) 7(Zi—1)
maximum possible density. The molecules form layers and : zf d

o NkgT
the molecular axes of all the molecules point in the same
direction. A more detailed description of the structure iswhereZ; is the compressibility factor of chain molecules in
given in Refs. 38 and 39. Other close-packed structures ahe fluid phase. The EOS of the fluid phase fior=4, 6 has
hard diatomics were described in Ref. 39, but the differencepeen reported previousﬁ.ln the case ofm=3 we perform
in free energy between different structures were found to b@ew simulations to determine the EOS in the fluid phase.
small. Similarly, we expect small differences for the thermo-Equation(17) is integrated in the low-density regidap to
dynamic properties of different close packed structures of thgolume fractions of about 0.1Qusing the virial expansion
LTHS model. truncated at fourth order in densitihe virial coefficients of

Recently?® computer simulations for the LTHS model in the LTHS form=3, 4, 6 were determined some time &3p
the solid phase witm=3, 4, 5, 6 have been performed using and for packing fractions higher than 0.10 the equation-of-
the Rahman—Parrinefio modification of the constant- state simulation results are fitted to an empirical expression.
pressuréN-P-T Monte Carlo technique in order to allow for The fluid—solid equilibria form=3 andm=4 were ob-
anisotropic changes of the simulation box sifagiece the tained by equating the chemical potentials and pressures of
solid CP1 structure does not have cubic symmetry. The simuhe fluid and solid phases. We did not evaluate the fluid—
lation results for the equation of state were reportedsolid equilibrium form=6 since liquid-crystalline phases
elsewheré? In this work free energy calculations have been(nematic and smecticare knowr®®to be present between
performed for the LTHS in the solid pha$€P1 structure  the fluid and solid phases in this case.
for m=3, 4, 6. These free energy calculations allow to de-
term.me the fluid—solid transition of the LTHS mode_l and' IV RESULTS
provide a test of the performance of the theory described in
this paper. The free energies of the solid phases have been We have used the expressions presented in the previous
calculated using the Einstein-crystal methodoldgy.The  section to obtain the phase diagram of LTHS chains incorpo-
method used here is quite similar to the one described imating attractive interactions in the mean-field approximation
previous works>>"%8The idea is to build a reversible path of van der Waals. We have also determined the phase behav-
between the solid and an ideal Einstein crystal. In the idealor of fully flexible chains, and the results corresponding to
Einstein crystal the molecules are linked to the lattice sitedoth models have been compared. The phase equilibria be-
with harmonic springs, and there are no intermolecular intertween two or three given phases have been calculated in the
actions. Translational and orientational springs are used. Thasual way, by equating the pressure and chemical potential in
maximum value of the strength of the spring,,used inthe each phase. Throughout this section we use the integrated
calculations was the same for both translational and orientanean-field dispersive energy, as the unit of energy and
tional springs. We useN,,5,=1300, 5500, 9000 fom=3, 4, the hard sphere diameter of the monomers forming the
6, respectively(note that the units are dégT/o? for the  chains as the unit of length. According to this, we define the
translational spring and &g T for the orientational spring  reduced temperature and pressureTas=kgT/ e and p*
Fifteen different values ok in the range X<\, were =po/ey. The coexistence densities are given in terms of
used to connect the reference solid to the interacting Einsteithe packing fractiory.
crystal. The difference in free energy between the interacting Before presenting the results corresponding to the phase
Einstein crystal and the noninteracting Einstein crystal wadehavior of fully flexible and linear rigid hard sphere chains
obtained by using umbrella sampling as described in Ref. 39with segment—segment attractive interactions at the mean-
The length of the runs for the free energy calculations wadield level of van der Waals, we examine the solid—fluid
40 000 equilibration cycles-40 000 averaging cycles. In the phase behavior of linear tangent hard sphere molecules of

R 7, (17)
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TABLE |. Helmholtz free energies for linear rigid tangent hard sphere 30
chains with different chain lengths corresponding to an ordered glalid

beled CP1 in Ref. 39 obtained from Einstein-crystal calculations,
AS™(NkgT), and from the extension of Wertheim’s first-order thermody-

namic perturbation theorA"®°Y(NkgT). The density is given in terms of

the packing fractiony= (/6)a3p"".

20

7 AsimuI/ ( N kBT) Atheory/ ( N kBT) a Atheory/ ( N kBT) b

0.63113 15.165 15.686 15.880
0.618 42 15.378 15.861 16.011

m
3 0.569 45 11.770 12.382 12.359 *
4
6

@0btained using the cell theory for the hard sphere reference system in the
solid phase.
PObtained using the Hall EOS for the hard sphere reference system in the
solid phase.

0 0.1 ) 0.2 0.3 0.4 0.5 0.6 0.7

different chain lengths. This is done by settigg=0 in Eq.
(15). In Table | the theoretical predictions and simulation FiG. 1. EOS of fully flexible and LTHS chains witim=3 in the fluid and
results for the free energy of linear rigid hard sphere chainsolid phases. The solid lines correspond to the theoretical predictions. The
in the solid phase are presented. As can be seen, the agré’ en circles represent molecular simulation results for fully flexible chains
. . S aken from the literaturéRef. 29 and the open squares the simulation data
ment between the theory and simulation data is quite goodm linear rigid chains obtained in this work and taken from the literature
with deviations of about 5%. It is important to emphasize(Rref. 38. The solid symbols with horizontal dotted lines represent the
here that the theoretical determination of the free energy ofuid—solid coexistence densities and tie lines, respectively, for flexible

linear I’igid tangent hard chains in the solid phase is not aI(‘circIes) (Ref. 29 and linear(squarep chains obtained in this work. The
horizontal solid lines represent the theoretical predictions for the transitions.

easy task, so that the accuracy of th_e results of Table I_jUStify'he inset shows the high-pressure behavior of the EOS in the solid phase.
the use of the approximations leading to E&y). The dif-  The reduced pressure is givenpais=p/(kgT).

ference in the free energy in the solid phases of the flexible
chain model and the rigid linear model can be seen by com-
paring the data in Table | in this work and those of Table | inthan the flexible ones. Conversely, for a certain packing frac-
Ref. 28. The comparison reveals that the free energies dfon the pressure of the flexible model is considerably higher
flexible chains are substantially larger than those of lineathan that of the linear rigid one. A consequence of this shift-
rigid chains(for instance, form=4 the free energy of the ing is that the solid—fluid phase transition of linear rigid
flexible chains is about twice that of the linear rigid chains chains occurs at lower pressures than those corresponding to
Moreover, the variation of the free energy of the solid phasdully flexible chains. In Fig. 2 the fluid—solid equilibrium of
with chain lengthm is markedly different for the flexible and flexible and linear rigid hard sphere chains witih=4 is
linear rigid chains. For a given volume fractidie., ») the  presented. The trends are similar to those presented in Fig. 1
free energy of the flexible chains in the solid phase increasefor m=3. Note, however, that in passing from=3 to m
linearly with m, whereas that of the linear rigid chains be- =4, the freezing properties of flexible chains hardly change,
comes practically independent of for relatively small val- whereas those of linear rigid chains undergo important
ues ofm (Ref. 42. Notice that in the fluid phase flexible and changes. As can be seen, agreement between the theoretical
linear rigid chains present very similédentical in the TPT1 predictions and simulation data is excellent at all thermody-
approach equations of state and free energies, which in-namic conditions, including the solid—fluid coexisting prop-
crease linearly for increasing. Summing up, flexible and erties. The message from Figs. 1 and 2 is that by using the
rigid hard chains present the same scaling for the free enerdyOS of hard spheres in the fluid phase and the EOS of hard
for the fluid phase, but different scaling for the free energy ofspheres in the solid phase, it is possible to yield reasonable
the solid phasé? The freezing behavior of both systems canpredictions of the fluid—solid equilibrium of flexible and
be expected to be rather different given the different behaviot THS chains. It is striking that all the information required to
of the solid free energies in the solid phase. implement the theory was available forty years ago already.
In Fig. 1 the EOS for fully flexible and LTHS chains In Table Il the fluid—solid coexistence properties of lin-
with m=3 are shown, including the fluid and solid phases,ear rigid hard chains are presented. The results for the flex-
as well as the solid—fluid phase transition obtained from theble chain model are also presented. It can be seen that,
extension of Wertheim’s theory and the computer simulationsvhereas the packing fraction of fully flexible chains at freez-
of this work. We have also included the computer simulationing remains approximately constant, that of linear rigid
results of fully flexible hard sphere chains of Malanoski andchains decreases asincreases. The results of Table Il show
Monson?® As can be seen, the EOS of both models in thethat the extension of the theory of Wertheim presented in this
fluid phase are nearly identical, as expected. However, theork is able to provide an excellent description of the solid—
EOS of fully flexible and linear rigid chains in the solid fluid phase transition for flexible and LTHS chains, although
phase are dramatically different. For a given pressure, th#é is important to note here that linear rigid hard chains
linear rigid chains have a higher density in the solid phasegreater thanm=5 are known to exhibit liquid-crystalline
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theT- » projection, the phase diagram of fully flexible chains
is characterized by a large fluid range. In addition, the triple-
point temperature reaches very rapidly an asymptotic finite
value and the solid—fluid coexistence densities become simi-
lar for long chain molecules. The largest increase in the
solid—fluid phase behavior occurs in going from the dimer to
the trimer system. It is important to note here that the triple
temperaturg showed in the inset of Fig.(8)] is close to
constant for the chain lengths considered, although it slightly
increases as the chain length is larger. The results presented
here using the cell theoty®' to describe the solid phase of
the hard sphere monomer are similar to those obtained in a
previous work with the EQOS of H4f for the hard sphere
solid3® The p-T projection of the phase diagram and its
log p-T representation are presented in Fig&)3and 3c),
respectively. As can be seen, the solid—liquid melting line is
n almost vertical, showing a small dependence on the chain
FIG. 2. EOS of fully flexible and LTHS chains witn=4 in the fiuid and |€N9th, s suggested by the previous figure, and indicating a

solid phases. The solid lines correspond to the theoretical predictions. ThErge fluid range in all cases. The temperature dependence of
open circles represent molecular simulation results for fully flexible chainsthe solid—vapor coexistence pressure is better seen in the
take.n from'the Iltergturé?ef. 29 gnd Fhe open squares the S|mulat[on data Iog p-T representation. As can be seen, the triple pressure
for linear rigid chains obtained in this work and taken from the literature . .

(Ref. 38. The solid symbols with horizontal dotted lines represent the Qecreases by _Se_ve_ral orders of _magn'tUde as_ the chain Igngth
fluid—solid coexistence densities and tie lines, respectively, for flexibleincreases. This is in contrast with the behavior of the triple

(circles (Ref. 29 and linear(square} chains obtained in this work. The temperature, which is nearly constant for the chain lengths
horizontal solid lines represent the theoretical predictions for the transitionsstudied (n: 2—6) (see Table ”)

The inset shows the high-pressure behavior of the EOS in the solid phase. L .
The reduced pressure is given inas= p/(kgT). The T-# projection of the phase diagram of LTHS

chains with segment—segment attractive interactions at the

mean-field level is presented Figaft Important differences
phase behavior in addition to the fluid—solid phase behaviowith the coexistence curves of the fully flexible chain model
studied in this work. can be observed. The most striking concerns the behavior of

Once we have checked that the scaling proposed by Veghe solid—liquid coexistence as the chain length is increased:

and McBridé? for the EOS and the scaling proposed in thisin the case of the fully flexible chains the equilibrium curves
work for the Helmholtz free energy of LTHS molecules areare practically identicalalthough slight density increases are
able to predict accurately the solid—fluid phase transition foiseen as the chain length is incregsedhereas in the case of
different chain lengths, we use the theory presented in Sec. linear rigid molecules the coexistence boundaries are greatly
to describe the phase behavior of linear rigid chains withdisplaced toward lower densities as the chain length is in-
segment—segment attractive interactions at the mean-fielereased, indicating that the solid phase becomes more stable
level of van der Waals. We consider first the global phasghan the liquid phase. A second important difference, related
behavior of fully flexible chains. In Fig.(8) the coexistence to the first one, is the behavior of the triple temperature,
curves of fully flexible hard chain molecules with different which increases for larger molecules. As a consequence of
chain lengths and with segment—segment attractive intera¢his, the liquid—vapor coexistence region becomes smaller in
tions at the mean-field level are presented. As can be seen both the temperature and density ranges. Note that the fluid

TABLE IlI. Fluid—solid coexistence data for fully flexible and linear rigid chains formed by three and four
tangent hard sphere segments. The simulation data have been obtained from ®dfy 2@xible) and from

this work (linear rigid using the Einstein-crystal methodology for calculating the Helmholtz free energy,
thermodynamic integration, arid-P-T simulations using the Rahman—Parrinello technique. The theory cor-
responds to the predictions from the extension of Wertheim’s approach proposed in this work. The reduced
pressurep* is given byp* =p/(kgT).

m Model Method L 7s p*

3 Fully flexible Simulation 0.5288 0.5864 12.90
3 Fully flexible Theory 0.5205 0.5810 12.29
4 Fully flexible Simulation 0.5289 0.5917 13.00
4 Fully flexible Theory 0.5236 0.5855 12.34
3 Linear rigid Simulation 0.4764 0.5639 7.655
3 Linear rigid Theory 0.4797 0.5861 8.296
4 Linear rigid Simulation 0.4308 0.5209 4.367
4 Linear rigid Theory 0.4252 0.5529 4.741
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iy orders of magnitude larger than those corresponding to fully

y | flexible chains of the same chain length. The low-

0 ‘ ‘ ‘ , , L~ temperature coexistence pressures can be seen more clearly

0 0.1 02 03 04 05 06 07 in Fig. 4(c), in which a logp-T representation is shown. As

@ n can be seen, the triple-point temperature and pressure in-
0.006 . ‘ ‘ . crease as the chain length is increased, which clearly indi-

cates that the ordered solid phase corresponding to linear

rigid molecules becomes quite stable.

Let us now consider the phase diagrams of flexible and
linear models in the case of very long chains. In Fig. 5 the
phase diagram of the flexible model for longer chains is pre-
sented. As can be seen, the vapor—solid and fluid—solid equi-
libria are hardly affected by the length of the chain in this
case(in agreement with our previous work This is a direct
consequence of the scaling behavior of the Helmholtz free
energy with the chain lengt:>3

We have also studied the phase behavior of longer LTHS
chains with segment—segment attractive interactions in order
0 - RSP . to determine the dependence of the triple-point temperature
o 0 0.05 oo, o 020 025 as the chain length is increased. However, care must be taken
with these results. It is well known that LTHS chain mol-
ecules form liquid crystal phases far longer than 5. One
may suspect that the same must occur for rigid linear chains
presenting attractive forces. Hence it is expected that the
phase diagrams presented here for longer chains will be
modified when the existence of liquid-crystalline phases is
explicitly considered. Although beyond the scope of this
work, it is possible that the commonly used lattice theory for
liquid crystals could be incorporated in the Wertheim’s for-
malism to deal with the liquid-crystalline phases exhibited
by long LTHS chains. Unfortunately, it is not obvious to us
how to extend the theoretical treatment of this work to deal
with liquid-crystalline phases. Therefore, the results pre-
sented here for long linear rigid chains must be regarded
o ye ol o o5 T o with care and seen as only providing first hint _of how the
© ) ' I : : : phase diagram would be in the absence of liquid-crystal

phases.
FIG. 3. (@ T-#, (b) p-T, and(c) log p-T projections of the global phase The T-» and p-T projections of the phase diagram of

diagram of fully flexible hard sphere chain molecules with segment— : - - .
segment attractive interactions with lengths- 2 (solid curve$, m= 3 (dot- linear chains for relatively long chain lengths are shown in

ted curve§ m=4 (dashed curvgsm=5 (long-dashed curvgsandm=6 Fig. 6 As can be seen in Fig(®, the fluid den_SitieS at
(dot-dashed curvesThe inset in(a) shows the region close to the triple freezing move toward lower values as the chain length is

point. increased, producing a shrinking of the fluid region. This is
due to the stabilization of the solid phase with respect to the
liquid phase. As a consequence, the triple-point temperature
phases are described with Wertheim’'s TPT1, so that flexibléehaves completely different to that of the fully flexible
and linear rigid chains are described by the same equatiorghains: whereas in the flexible model the triple temperature
in the fluid phase. This means that the vapor—liquid equilibis almost constant for the whole range of chain lengths con-
ria predicted by the theory for flexible and linear rigid chainssidered, the triple temperature of linear rigid chains increases

0.7 T T are identical; although differences between the vapor-liquid
0,050 5 equilibria of flexible and linear chains must exist, they are
06 ¢ ! ! expected to be small. The-T projection of the phase dia-
ooaoy _ | ! gram is shown in Fig. é). As can be seen, the solid—liquid
05 1 ol 1| 1 coexistence pressure is greatly displaced toward higher tem-
o peratures as the chain length is increased, which suggests
. 0.4 F 0047 ! i‘ 1 that the ordered solid phase of linear rigid chains is more
= 0.046 ! i stable than the disordered solid phase of fully flexible chain
03T 045 065 | ) ] molecules. Another noticeable difference between both mod-
'g : els is that the absolute values of the solid—vapor coexistence
; { or sublimation pressure for linear rigid chains are several
i

0.005 +

0.004 |

0.003

p*

0.002

0.001
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TABLE Ill. Triple and critical temperatures of fully flexible hard sphere chains with segment—segment attrac-
tive interactions at the mean-field level of van der Waals. The liquid and solid derisitig®ssed in terms of
packing fractionsat the triple point and the triple temperature to critical temperature ratio are also included.

m T: T 75 7 TEITE

2 0.143 92 0.046 99 0.592 81 0.490 90 0.326 50
3 0.178 44 0.047 85 0.601 07 0.498 20 0.268 16
4 0.204 91 0.048 30 0.605 21 0.501 68 0.23571
5 0.226 32 0.048 59 0.607 69 0.503 72 0.214 69
6 0.244 24 0.048 79 0.609 35 0.505 12 0.199 76
8 0.273 04 0.049 04 0.611 41 0.506 69 0.179 61

for increasing molecular length, producing a wider range ofrepulsive hard chain. In this respect the key equation to un-
temperatures in which the solid is in equilibrium with its derstand the different phase behavior of flexible and linear
vapor. In fact, a wide liquid—vapor temperature range is seerigid chains is Eq.(14). Flexible chains can form a disor-

in the fully flexible models, while linear rigid chains formed dered solid whereas rigid chains canifas taken into ac-

by the same number of segments exhibit solid—vapor equieount by the second parenthesis on the right-hand side of Eq.
libria. For instance, a system of chains formed by seven tani14)]. When considering only the second term on the right-
gent hard spheres with segment—segment attractive interagand side of Eq(14) it turns out that flexible chains should
tions at the mean-field level of van der Waals has a triplehave lower free energy in the solid phase than linear rigid
temperature to critical temperature rafiQ/T., which is  chains due to the presence of the degeneracy entropy. But
equal to 0.172 for the case of fully flexible chains, indicatingthis is only half of the history. Flexible and rigid chains differ

a huge fluid range, and equal to 0.776 for linear moleculesy gt only in the type of solid they form, but more importantly,
indicating a narrow vapor-liquid coexistence. Note that thisyjffer dramatically in the EOS of the solid phase, reflecting
ratio increases toward the limiting ca$e/Tc—1 in which  ne important fact of having different Hamiltoniari® be

the vapor-liquid equilibria disappears because the soliigyinie or to be rigid. Looking back, probably the surprising
phase becomes more stable that the liquid at all thermodytayre js not that flexible and linear rigid chains present
namic conditions. The prediction that the liquid range of lin- jitarant EOS in the solid phase, which can be attributed to
ear rigid chains is quite small.e., high values off/Tc) IS e gifferences in the Hamiltonians of both models, but

somew_hat surprising. FOF this reason, work is und_er way t?ather that they are so similar in the fluid phdas can be
determine by computer simulation the full phase diagram %%een from the simulation results of Figs. 1 andTherefore

linear rigid Lennard-Jones chaiffsPreliminary results for the key term to understand why the free energy of linear

m=3 and m=5 from simulation data confirm the trends . : S . LS .
redicted by the theory of this work rigid chains is lower than that of flexible chains is the first
P | term on the right-hand side of E¢L4). The reduction in the

Results corresponding to the solid—liquid, liquid—vapor, ; -
and solid—vapor coexistence pressures, as functions of tenq_umber of degrees of freedom of the linear rigid chein

perature, for LTHS chains are shown in Fighp As can be compared to 3-2(m—1)] is responsible for the decrease of

seen, a similar behavior to that corresponding to shorteﬁhe compressibility factor and free energy of the linear rigid

chains is observed. The triple-point pressure of linear rigia‘:haln when compared to the flexible one. This reduction in

chains increases as the chain length is increased, in agref€ compressibility factor and free energy of a linear rigid

ment with the results for th@-7 coexistence diagrams. In chain with respect to the flexible chain is the key factor that
addition to thep-T projection of the phase diagram, we have dete_rmines the diff_ere_nt phase diagram of erxibIe_,- and rigid
also used a log-T representation in order to study the solid— ¢hains. The reduction in the free energy of the solid phase of
vapor coexistence pressures with temperature. An increase Bf€ar rigid chains results in an additional stability of the
the chain length results in a displacement of the curve for th€0lid phase and that moves the fluid densities at freezing to
vapor—solid pressure toward higher temperatures. It is imlower values.
portant to note that these pressures are several orders of mag- Finally, we consider the phase diagram of longer LTHS
nitude higher than the pressures corresponding to fully flexchains with segment—segment attractive interactions at the
ible chains, as expected from previous results. mean-field level of van der Waals. THe » projections of
The differences between the global phase diagrams dhe phase diagram for molecules with chain lengtirs 11,
fully flexible and linear rigid chains are a direct consequencel2, 16, and 20 are shown in Fig(aJ. As can be seen, the
of the differences between the free energies of both systemygpor—liquid coexistence becomes unstable for molecules
in the solid phaséin the present treatment the free energiesformed by more than 11 tangent segmeri®e triple and
of the fluid phase are identical, so that differences in theritical properties of a system formed by molecules with 11
phase diagram arise from differences in the behavior of théinear rigid tangent segments are nearly identical; iT¢.,
solid phasg According to the theory of this work, differ- =0.297 25 andp} =0.83538<10 % and T} =0.305 15 and
ences in the free energy of the solid phase do not arise from* =0.999 09<10 3. See also Table IV for further details.
the attractive forceswhich in both cases are treated at theln other words, the vapor—liquid envelope lies below the
mean-field level but rather in the treatment of the referencevapor—solid coexistence curve, indicating that the vapor—
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FIG. 5. T- 5 projection of the global phase diagram of fully flexible hard
0.006 sphere molecules with segment—segment attractive interactions with lengths
m=2 (solid curve$ andm=28 (dotted curves
0.005 | 1
0.004 | 1 liquid equilibria is metastable with respect to the solid phase.
For longer chainsmm=12, linear rigid chains exhibit solid—
x fluid equilibria only. We have also obtained the coexistence
%, 0.003 f 1 : A
pressure corresponding to the systems studied in Kaj. 7
As can be seen in Fig.(d), the coexistence pressures move
0.002 ¢ | toward higher temperatures as the chain length is increased.
A change in curvature is seen for a system formed by linear
0.001 | 4 rigid chains withm= 12 (and also form= 16, although with
a lower changgin the region close to the critical region of
0 chains withm=11, probably due to the presence of the
) 0 03 metastable vapor—liquid coexistence. The extent of the fluid
range for increasing chain lengths in the rigid and flexible
models is summarized in Fig. 8. The calculated critical tem-
10° | peratures and triple temperaturgsg. 8@)] and the corre-
sponding pressurd$ig. 8b)] are considered. In these rep-
resentations the disappearance of the fluid range for rigid
10’ chains longer tham=11 is suggested by the intersection of
the curve of the critical points and the line of the triple
ot points. The markedly different dependence of the triple-point
S conditions with increasing chain lengths in the rigid and flex-
& ible model is also highlighted. The triple-point temperatures
10" increase linearly with increasing chain length in the case of
the rigid model, while a close-to-constant behavior is found
for the flexible model; in this case, the curves of critical and
107 triple-point conditions do not intersect.
10‘25 P ) | L L L
© 0 0.05 0.1 O;FS 0.2 0.25 0.3 \.. CONCLUSIONS

The global (solid—liquid, vapor—liquid, and solid—
vapon phase behavior of fully flexible and linear rigid hard
sphere chains with segment—segment attractive interactions
at the mean-field level of van der Waals has been obtained

FIG. 4. (@ T-7, (b) p-T, and(c) log p-T projections of the global phase ;5ing Wertheim's first-order thermodynamic perturbation
diagram of LTHS chain molecules with segment—segment attractive inter;

actions with lengthan=3 (dotted curves m=4 (dashed curvgs m=5 theory' . L .
(long-dashed curvésand m=6 (dot-dashed curvésThe phase behavior An extension of the original TPT1 theory of Wertheim
corresponding to dimerax(=2) is also includedsolid curves. has been proposed to describe the solid phase of linear rigid
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FIG. 6. (8) T-7 and (b) p-T projections of the global phase diagram of (b) T+

LTHS chain molecules with segment-segment attractive interactions with

lengthsm=7 (dotted curves m=8 (dashed curvésm=9 (long-dashed  FIG. 7. (a) T-» projection andb) log p-T representation of the global phase

curves, andm= 10 (dot-dashed curv@sThe phase behavior corresponding diagram of LTHS chain molecules with segment—segment attractive inter-

to dimers m=2) is also included(solid curves. The inset of(b) also  actions with lengthsm=11 (dotted curveg m=12 (dashed curvgs m

includes a logp-T representation of the coexistence pressure vs temperatures 16 (long-dashed curvgsand m=20 (dot-dashed curvgsThe phase be-
havior corresponding to dimersn=2) is also includedsolid curves.

hard chain molecules. The theoretical framework, which is
based on the scaling proposed recently by Vega andflexible or rigid is an EOS of hard sphere monomers in the
McBride*? provides an accurate description of the EOS offluid and in the solid phase.
the system in the whole range of solid densities for different  The extension of Wertheim's perturbation theory is also
chain lengths. The scaling of the Helmholtz free energy takessed to study the phase behavior of linear chains with
into account explicitly the ordered nature of the solid struc-segment—segment attractive interactions treated at the mean-
ture corresponding to linear rigid chains. field level of van der Waals. In this sense the results pre-
In order to test the theoretical extension of the theory, wesented here constitute the natural extension of the seminal
have determined by computer simulati@sing the Einstein-  work of Longuet-Higgins and Widorf#:44
crystal methodologythe Helmholtz free energy of LTHS The effect of increasing the chain length for linear rigid
chain molecules of three different chain lengths. This al-models is to move the coexistence densities of the fluid
lowed the determination of the fluid—solid equilibrium of phase at freezing to lower values. The most noticeable effect
linear rigid chains withm=3 and 4. It has been found that of this behavior is the strong increase in the triple-point tem-
the EOS and free energies of flexible and linear rigid chainperature and pressure as the chain length is increased. Due to
are quite different in the solid phase. The theory proposed ithis, the vapor—liquid coexistence region is greatly de-
this work provides a good description of the EOS and freecreased. At temperatures below the triple point, the solid
energy for both flexible and linear rigid chains and is able todensities at coexistence move toward higher densities as the
predict reasonably well the fluid—solid equilibrium of both chain length is increased.
models. It is striking that all that is needed to develop a  The behavior observed for LTHS chains is also com-
theory for the fluid—solid equilibrium of hard sphere chainspared with that corresponding to fully flexible molecules. In
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TABLE IV. Triple-point properties of linear rigid hard chains with a mean-field attractive contribution as
obtained from the extension of Wertheim’s perturbation theory for the fluid and solid phases. The coexistence
densities of the solid, liquid, and vapor phases at the triple point are denoted in terms of packing fragtions

7, andn, , respectively. The critical pressure and temperature of the chains considered are also included.

m T py T: [ 75 7) 7,

3 006440 0.3344910°7 0.17844 0.3650410°2 0.61944 0.44193 0.8158&70°
4 0.09421 0.1275810°° 0.20491 0.2808910°2 0.60562 0.37027 0.283 8910 *
5 012444 0.2254810% 022632 0.2274810°2 059650 0.31334 0.225 34103
6 015468 0.4249810°% 0.24424 0.1898210°2 059027 0.26582 0.884 34103
7 018468 0.1123410°% 0.25961 0.1619%10°2 058601 0.22471 0.236 8410 2
8 0.21428 0.2304910°° 0.27304 0.1408910°°> 0.58316 0.18792 0.508 8810 2
9 024338 0.4004010°% 0.28490 0.1243810°2 058136 0.15368 0.964 63L0 2

10 0.27194 0.6214210°% 029552 0.1109810°2 0.58032 0.11986 0.173R10!
11  0.29994 0.8892210°° 0.30515 0.9990810°% 057988 0.07988 0.03423

the latter system, the solid—liquid and solid—vapor phase beas the chain length is increased. In particular, very small
havior is not very sensitive to chain length changes, and thdifferences are observed for chains formed by more than four
phase boundaries reach very rapidly an asymptotic behavi@egments. Due to this behavior of the phase boundaries, the
triple-point temperatures and pressures, as well as the critical
properties, reach asymptotic limits.

The differences between the phase diagrams of fully
flexible and linear rigid chain molecules are due to two fac-
tors: namely, the different type of solid they may form and
o the different scaling of the EOS and free energy of the solid
o g phase that results from the difference in the Hamiltonian
o D (one model is flexible while the other is rigidBoth contri-

e D butions are accounted for in E4.4), although in an approxi-
02 r L D | mate way; this is probably one of the main contributions of
D this work. The different scaling means that for fully flexible
chains the fluid—solid equilibrium is hardly affected by the
01 | ] length of the chains, whereas for the linear rigid model the
g fluid—solid equilibrium changes strongly with the length of
. . . the chain.
We have also considered long chain lengths in the linear
0 ' : ' ’ rigid chain model in order to observe the effect of the stabi-
(a) m lization effect of the solid phase on the vapor—liquid phase
behavior. As the chains become larger, the solid—liquid
0.004 ' ' boundaries move toward lower densities, making the vapor—
Q liquid coexistence region smaller. For linear rigid chains
formed by more than 11 segments, the solid phase becomes
0.003 - 1 so stable with respect to the liquid that the vapor-liquid
o, coexistence becomes unstable and no stable vapor—liquid
equilibria is observed fom>11. In other words, for linear
o rigid chains with more than 11 segments, the system only
A 0.002 f o 1 exhibits solid—vapor phase behavior. Care must be taken,
o however, with respect to the results corresponding to these
o long linear rigid chains. It is well known that such a model,
when only repulsions are taken into account, exhibits liquid-
crystalline phases. Unfortunately, the simplified theoretical
description presented here cannot be extended in a simple
VVVVVVV e way to deal with liquid-crystalline phases. Here our aim was
5 4 = 3 10 12 rather to illustrate a possible scenario of the phase diagram of
(b) m flexible and linear rigid chains based on a simplified treat-
FIG. 8. Theoretical predictions for the critical and trif® temperatures ~ment. This work suggests that the analysis of the phase dia-
and (b) pressures of fully flexible and linear rigid chains as functions of the gram of linear rigid chains may yield some surpriges-
_chain Iength. Th_e open _circles represent the critical propert_ies of fuIIy_erx-}r‘,j.lordinary high values of /T, and, therefore, very small
ible and linear rigid chains, the open squares the triple point properties of. ~ . .. . .
iquid range$. This is certainly a problem which would be

LTHS chains, and the solid squares the triple point properties of fully flex- | ) i ! -
ible molecules. The dotted curves are just guides to the eye. worth looking into in order to gain a better understanding of

0.4 T T T .

03 r

T*

0.001
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