Estrategia didáctica para el proceso de enseñanza-aprendizaje de la estadística mediante la herramienta estadística R

Didactic strategy for teaching-learning of statistics by the R statistical tool

Leynis Enoa Payés

1 Universidad de Granma, Cuba

lenoap@udg.co.cu

RESUMEN. Como apoyo al proceso de enseñanza-aprendizaje de la Estadística, en la Educación Superior se utilizan diferentes herramientas computacionales, sin embargo, se ha observado que en la Facultad Regional de Granma de la Universidad de las Ciencias Informáticas no se manipulan los datos estadísticos a través de las diferentes herramientas destinadas a este proceso, lo que ha repercutido en el incumplimiento de los objetivos trazados en las clases de laboratorios de la asignatura y que el estudiante no sea capaz de aplicar los conocimientos estadísticos adquiridos en las investigaciones científicas. Para darle solución a esta problemática, se propuso diseñar una estrategia didáctica para el proceso de enseñanza-aprendizaje de la Estadística en la carrera de Ingeniería en Ciencias Informáticas mediante la herramienta estadística R. Por lo que fue necesario caracterizar el proceso de enseñanza-aprendizaje de la Estadística en diferentes carreras universitarias, incluyendo Ingeniería en Ciencias Informáticas. Seguidamente se analizó el uso de las herramientas estadísticas desde el componente académico, laboral e investigativo, lo cual posibilita en los estudiantes una aceptable motivación por la Estadística. Además se realizó el diagnóstico de la situación concreta en este centro, y como resultado, se logró una solución sustentada teóricamente y valorada satisfactoriamente por un conjunto de especialistas.

ABSTRACT. To support the process of teaching and learning of statistics in higher education different computational tools are used, however, it has been observed that in Granma Regional School of the University of Information Sciences statistical data is not manipulated through different tools for this process, which has resulted in the failure of the goals in classes and laboratories of the course the student is unable to apply statistical knowledge acquired in scientific research. For solving this problem, I set out to design a didactic strategy for the teaching and learning of Statistics in Engineering in Computer Science by statistical tool R. So it was necessary to characterize the teaching-learning Statistics in various university courses, including Engineering in Computer Science. Then the use of statistical tools was analyzed from the academic, labor and research component, which allows students in an acceptable motivation for Statistics. Besides diagnosing the specific situation in this center it was held, and as a result, theoretically supported and successfully assessed by a group of specialists solution was achieved.

PALABRAS CLAVE: Proceso de enseñanza-aprendizaje, Estadística, Estrategia didáctica, Herramienta estadística R.

KEYWORDS: Teaching-learning process, Statistics, Didactic strategy, Statistical tool R.
1. Introducción

El rápido y sostenido incremento en el poder del cálculo de la computación desde la segunda mitad del siglo XX ha tenido un sustancial impacto en la práctica de la ciencia estadística. Ahora, la revolución en computadores tiene implicaciones en el futuro de la estadística, con un nuevo énfasis en estadísticas experimentales y empíricas. Un gran número de paquetes estadísticos se encuentran ahora disponibles para los investigadores y desarrolladores.

Los programas de estudio de Estadística en la educación superior cuentan con los tipos de clases: conferencias, clases prácticas, talleres y laboratorios, para el apoyo del proceso de enseñanza-aprendizaje de estos últimos y con el objetivo de observar la aplicación de la asignatura en futuras investigaciones, las universidades trabajan con herramientas informáticas que poseen una gran variedad de análisis estadísticos y gráficos de alta resolución.

2. Escenario para la estrategia didáctica

En Cuba, la carrera de Ingeniería en Ciencias Informáticas tiene como propósito formar ingenieros con sólidas competencias sustentadas en una concepción científica y dialéctico-materialista del mundo, es por eso que en el tercer año de la carrera se consolida la concepción científica del mundo, vinculando en forma dialéctica y materialista las abstracciones matemáticas relacionadas con los fenómenos aleatorios a la práctica y a la vida social del hombre, mediante la comprobación del carácter objetivo de las leyes que rigen los fenómenos aleatorios a través de la experimentación y el análisis estadístico, además se desarrollan aptitudes y hábitos correctos de investigación científica a través de la formulación precisa del problema y del rigor en la comprobación práctica de las hipótesis, Ortiz y Aguilera (2005). Todo esto es posible lograrlo a través de la asignatura de Probabilidad y Estadística, donde es necesario vincular el componente académico, investigativo y laboral.

En la Facultad Regional en Granma, se ha observado dificultades en el proceso de enseñanza aprendizaje de la estadística, y la vinculación por parte de los estudiantes y determinados profesores en diferentes investigaciones. Repercibiendo en ocasiones, en la calidad de dichas investigaciones y trabajos extraclases orientados en la asignatura, que se integran con otras asignaturas de la carrera. Por lo que, se realizó un diagnóstico para evaluar las principales deficiencias que influyen en el proceso de enseñanza-aprendizaje de la asignatura.

A partir de esta problemática, se realiza un análisis al programa de la asignatura Probabilidad y Estadística, donde destacan las principales dificultades:

- Se le dedica poco tiempo al trabajo con la herramienta estadística, si se analiza que el programa de la asignatura está concebido para la carrera de Ingeniería en Ciencias Informáticas, donde se prioriza el trabajo con los diferentes software y herramientas de apoyo al proceso de enseñanza-aprendizaje.
- Poco interés al trabajo con la herramienta, ya que los alumnos no siempre conocen la utilidad de la misma, y en posteriores investigaciones y/o trabajos de curso no recuerdan el funcionamiento y los pasos para trabajar con esta.
- Pérdida de tiempo a la hora de procesar la base de datos para darle solución a un ejercicio en específico o una investigación, debido a que no se pueden cargar o almacenar un conjunto de datos, ya que la herramienta Statgraphics no es compatible con el sistema operativo utilizado en la facultad.

En el curso 2010-2011 se realizó una entrevista a profesores de la asignatura Probabilidad y Estadística del centro, la cual ratifica las principales dificultades expresadas:

- En las clases de la asignatura se utilizan en varias ocasiones ejemplos y ejercicios que no se encuentran en correspondencia con los contenidos que se desarrollan en la Informática, provocando poca influencia en la actividad del futuro ingeniero, además de originar la poca motivación en el estudiantado.
• Limitación del uso de la herramienta estadística Statgraphics en la solución de tareas integradoras y trabajos investigativos donde sea necesario aplicar conocimientos de Estadística combinados con diferentes materias de la Informática y Metodología de la Investigación, debido a la carencia del procesamiento o almacenamiento de una base de datos existente.

• Las clases se imparten por profesores que en algunos casos no son especialistas en Estadísticas, y en otros presentan escasos conocimientos de computación.

Por las causas mencionadas anteriormente, se puede decir que, se evidencia poca vinculación académica e investigativa con el uso de las herramientas estadísticas en el proceso de enseñanza-aprendizaje de la Probabilidad y Estadística en la Facultad Regional de Granma de la Universidad de las Ciencias Informáticas.

3. Objetivo

Según lo descrito anteriormente se traza como objetivo: diseñar una estrategia didáctica para el proceso de enseñanza-aprendizaje de la Estadística en la carrera de Ingeniería en Ciencias Informáticas mediante la herramienta estadística R.

4. Tendencia de las herramientas estadísticas en el proceso de enseñanza-aprendizaje de la Estadística

El rápido y sostenido incremento en el poder de cálculo de la computación desde la segunda mitad del siglo XX ha tenido un sustancial impacto en la práctica de la ciencia estadística, es por esto que actualmente, se evidencie un creciente interés por utilizar computadoras y programas que permitan incrementar en los alumnos su capacidad innovadora, creativa, que integre conceptos pedagógicos, que interactúe fácilmente con el alumno y sobre todo que se ajuste a las necesidades individuales, según Estrada (2006).

En la enseñanza-aprendizaje de la Estadística en el sistema educacional cubano, se evidencia el uso de la computadora a partir de las transformaciones realizadas a los programas de estudio, donde se tienen grandes ventajas con respecto a otros medios, debido a la posibilidad de interacción y de individualización que ofrecen. Con una computadora pueden desarrollarse ambientes de aprendizaje donde el estudiante avanza a su propio ritmo y recibe refuerzo diferencial según sus capacidades y destrezas.

En la educación superior, el estudio de la Estadística se caracteriza por el trabajo continuo con diferentes herramientas estadísticas, conocidas como, “el conjunto de programas y subprogramas conectados de manera que funcionan en conjunto y que permiten aplicar a un mismo fichero de datos un conjunto ilimitado de procedimientos estadísticos de manera sincronizada”, según Miyar (2008); y definidas dentro del grupo de los asistentes matemáticos, siendo estos últimos, “software que realizan cálculos algebraicos e interpretaciones de resultados”, según Pinto (2011). Su principal objetivo es facilitar los cálculos matemáticos minimizando al máximo el posible error que se puede generar durante el proceso de solución. Estos asistentes por lo general presentan diversas opciones que permiten una vez realizado el cálculo numérico obtener su representación gráfica, como expresan Batanero, Estepa y Godino (1991).

En la Conferencia Internacional “Experiencias y expectativas en la enseñanza de la Estadística. Desafíos para el siglo XXI”, celebrada en Brasil en el año 1999, autores uruguayos como Esther Hochsztaín y otros (Hochsztaín, Ramírez y Álvarez, 1999), destacaron las ventajas que brindan los asistentes matemáticos en la enseñanza y aprendizaje de esta disciplina, sin embargo, afirman que existe una tendencia a la aplicación de técnicas estadísticas sin un claro objetivo y no hay una enseñanza orientada a la resolución de problemas. Es por esto que se deben tener claras cuáles son las funciones de la computación en la educación:

• Provocar la contradicción dialéctica entre la predicción de lo que el alumno piensa que va a suceder y la realidad, acercándolo a la verdadera formación del concepto y no solo al cálculo.

• Propiciar el proceso de construcción de los nuevos conceptos a partir de las acciones que los alumnos realizan.

www.revista-campusvirtuales.es
• Propiciar el paso de lo particular a lo general y de aquí a lo particular nuevamente. Se consolida el proceso de asimilación.
• Propiciar el descubrimiento de nuevas relaciones y la formulación de nuevas leyes desconocidas para él, por las potencialidades de cálculo de la computadora.
• Propiciar el reforzamiento de los procesos de inducción-deducción, abstracción-concreción, según Jiménez, Vázquez y Gutiérrez (2003).

Para algunos investigadores, el uso de la computadora y los asistentes matemáticos ha generado nuevos problemas. Uno de ellos es que se corre el riesgo de desarrollar análisis que constituyen sólo un ejercicio de uso del asistente sin dedicar el suficiente tiempo a analizar la coherencia y lógica detrás de los mismos. Cuando en los cálculos se empleaba mucho tiempo, se pensaba si era necesario realizar determinada operación, ahora que los cálculos no son un obstáculo, muchas veces no se piensa qué es lo que se está haciendo. El momento de reflexión se realiza después de la etapa de cálculo y no antes, ahora se dedica tiempo y esfuerzo en descartar análisis e indicadores sin sentido, según Freund (2006).

Por lo que, a partir de esta situación, es necesario determinar las acciones que se deben desarrollar durante el trabajo con los asistentes matemáticos:

1. “A partir del conocimiento de las principales dificultades del tema, determinar los conceptos que se quieren afinar, visualizar y desarrollar.
2. Determinar el momento más apropiado del tema para desarrollar las actividades con los asistentes matemáticos. Fundamental en este sentido es el laboratorio y las demostraciones de clases.
3. Determinar el conocimiento previo que es necesario dominen los alumnos con los asistentes matemáticos.
4. Selección de las tareas.
5. Determinar las preguntas más apropiadas para motivar y dirigir la observación de los estudiantes y el proceso de razonamiento, antes, durante y después del laboratorio u otras actividades que se organicen.

En la actualidad, existen diferentes herramientas estadísticas, ya sean con licencia libre o privativa, aunque no existen muchas herramientas estadísticas bajo licencia GPL, y algunas no pasan de calcular pequeños estadísticos, entre estas se encuentran: OCTAVE, R, ESS y PSPP. Entre las herramientas más importantes de licencia privativa, según María Pinto Molina (2011). Catedrática de documentación en la Facultad de Biblioteconomía y documentación de Granada, España, se encuentran: SPSS, SAS, Statistica, Matlab, Statgraphics y Minitab.

La elección de una herramienta estadística, normalmente depende de la formación de los usuarios, como así también de si será empleado en docencia o en investigación. En la docencia de disciplinas con preparación en matemática y programación computacional, se fomenta el empleo de programas estadísticos basados sobre sintaxis desde estudios precedentes y la resolución más fácil de los problemas del área. A continuación, se realiza un análisis de la herramienta libre más conocida:

R: Software estadístico más extendido en el ámbito universitario debido a su alta calidad y libre distribución. El lenguaje desarrollado dentro de R es orientado a objetos e incorpora gran número de rutinas de cálculo estadístico, en este sentido es el más completo actualmente. Brinda la posibilidad de incluir código en varios lenguajes y enlazarlos en tiempo de ejecución, importante para estudiantes de ingeniería informática. Posee una amplia comunidad de desarrolladores y aficionados, además es un programa basado sobre comandos y posee también un paquete (RCommander) que funciona como interfaz para facilitar el trabajo a determinados usuarios.

En opinión de la autora, el proceso de enseñanza-aprendizaje de la Estadística debería ser guiado por el

www.revista.campusvirtuales.es
enfoque de caja blanca-caja negra, como expresa Buchberger (2003), debido a que el estudiante debe conocer primeramente los conceptos principales, las diferentes fórmulas que se utilizan en cada prueba y la metodología a seguir para darle solución a un problema determinado, y a partir de la solución saber interpretar el significado de la misma. Es entonces, que el estudiante asimila los contenidos y es capaz de llevarlos a la práctica, a través de las herramientas estadísticas.

El trabajo con los asistentes matemáticos en el proceso de enseñanza-aprendizaje ha sido estudiado también por algunos autores desde otra perspectiva, ya sea en las investigaciones o en la docencia, conociéndose entonces como: herramienta de trabajo y recurso didáctico.

El asistente matemático como herramienta de trabajo permite minimizar el grado de complejidad de la tarea a desarrollar, procesando o buscando información, o realizando cálculos para la solución de determinados problemas. Por lo general, es utilizado fuera del aula, aunque no se descarta su uso dentro de la misma.

Como recurso didáctico, el asistente matemático se utiliza para mejorar el desarrollo de las clases, usándose casi siempre dentro de la misma pero guiados por una estrategia pedagógica, en ocasiones se puede utilizar en la ejercitación o apropiación de algunos contenidos en el encuentro de estudiantes y profesores.

Teniendo en cuenta esas ideas, la autora considera que el uso de los asistentes matemáticos en el proceso de enseñanza-aprendizaje, como herramienta de trabajo o como recurso didáctico, se encuentra determinado por el momento en que se utiliza, ya sea en la clase o fuera de ella; aunque en ocasiones, estas clasificaciones mantienen una continua interrelación que producen interdependencias, por lo que generalmente es casi imposible establecer una separación entre ellas. En base a esto, los asistentes matemáticos cumplen una doble función: como recurso didáctico para el profesor y como herramienta de trabajo para el alumno.

5. Metodología
Para realizar dicha investigación se trazaron las siguientes tareas:

1. Caracterización del proceso de enseñanza-aprendizaje de la asignatura Probabilidades y Estadística en las carreras de ingeniería.
2. Caracterización de la utilización de las herramientas estadísticas en el proceso de enseñanza-aprendizaje de la Estadística.
3. Diagnóstico de la situación actual de la utilización de las herramientas estadísticas en el proceso de enseñanza-aprendizaje de la asignatura Probabilidades y Estadística en la carrera de Ingeniería en Ciencias Informáticas en la Facultad Regional de Granma de la Universidad de las Ciencias Informáticas.
4. Análisis de los fundamentos teóricos de la estrategia a diseñar.
5. Elaboración de la estrategia didáctica para el proceso de enseñanza-aprendizaje de la Estadística en la carrera de Ingeniería en Ciencias Informáticas mediante la herramienta estadística R.
6. Valoración de la factibilidad de la estrategia didáctica a partir del criterio de especialistas.

El enfoque fundamental de la investigación fue el dialéctico materialista como metodología general del conocimiento científico que permitió comprender la esencia social del hombre. El sustento filosófico de la educación cubana; la dialéctica materialista, aporta el principio del estudio del objeto en su desarrollo. Teniendo en cuenta además, la participación activa del estudiante en el trabajo con la herramienta estadística para facilitar el proceso de enseñanza-aprendizaje de la asignatura.

6. Estrategia didáctica para el proceso de enseñanza-aprendizaje de la Estadística mediante la herramienta estadística R
La estrategia didáctica que se propone está sustentada por los principios didácticos que universalmente constituyen una guía segura para el proceso de enseñanza-aprendizaje:

www.revistacampusvirtuales.es
1. Principio del carácter científico del proceso de enseñanza-aprendizaje.
2. Principio de la sistematización del proceso de enseñanza-aprendizaje.
3. Principio de la vinculación de la teoría con la práctica.
4. Principio de la vinculación de lo concreto y lo abstracto.
5. Principio de la asequibilidad.
6. Principio de la solidez de los conocimientos.
7. Principio del trabajo consciente, creador, activo e independiente de los estudiantes bajo la dirección del profesor.
8. Principio de la atención de los estudiantes en interacción con el trabajo general del profesor con el grupo, como expresa Vargas y Hernández Falcón (2006).

Estos principios didácticos poseen un carácter de sistema, ya que se determinan y se complementan mutuamente, es decir que todos están en una relación inseparable y la omisión de uno afecta el cumplimiento de los demás, reflejándose en el proceso y sus resultados. En dependencia de las tareas específicas de uno u otro componente, o una u otra faceta de la enseñanza, se pone en primer plano el papel rector de uno u otro principio aislado.

La estrategia didáctica que se presenta se realiza a través de los aspectos: objetivo general, premisas, actores, recursos disponibles y etapas. Se encuentra apoyada en el trabajo con la herramienta estadística R, debido a que es un software libre y actualmente es la herramienta estadística más extendida en el ámbito universitario y permite a los estudiantes a través de diferentes lenguajes de programación obtener diversos resultados, aspecto significativo para la vinculación de la estadística con elementos técnicos de la carrera.

Objetivo de la estrategia:
Perfeccionar el proceso de enseñanza-aprendizaje de la Estadística, en el contexto actual de la carrera de Ingeniería de Ciencias Informáticas de la Facultad Regional de Granma, mediante el uso de la herramienta estadística R, para erradicar los problemas que presentan los estudiantes con su aplicación en el proceso de investigación científica.

Premisas de la estrategia:
• El reconocimiento de la naturaleza intrínseca del contenido del proceso de enseñanza-aprendizaje: sistema de conocimientos, sistema de habilidades, valores y formas de evaluación.
• Disposición de los profesores a aceptar los posibles cambios en su quehacer profesional, incluido, la preparación teórica y práctica por parte de los profesores que imparten la asignatura en el trabajo con la herramienta estadística R.
• Coordinar con el Centro de Desarrollo de la facultad las principales actividades investigativas que se pueden desarrollar desde las diferentes áreas informáticas.
• Facilitar el trabajo de los alumnos con la ayuda de la herramienta estadística R, partiendo de los procedimientos y métodos de solución a emplear.

Actores de la estrategia:
Se concibe en la estrategia la participación de dos actores principales: el docente y los estudiantes, el primero tiene como función dirigir el trabajo con la herramienta estadística R en el proceso de enseñanza-aprendizaje de la Estadística. El segundo tiene como función principal la autoformación en el contenido Estadístico para su posterior utilización en su desempeño profesional.

Recursos disponibles:
Poseer una computadora, la herramienta estadística R, en su versión 2.15.1, para el sistema Operativo Linux, y el paquete R Commander en su versión 1.9-1, utilizado con el objetivo de hacer más fácil el trabajo con la herramienta estadística, a través de una interfaz gráfica amigable.

Etapas de la estrategia:
Ensa, L. (2016). Estrategia didáctica para el proceso de enseñanza-aprendizaje de la estadística mediante la herramienta estadística R. Campus Virtual, 5(2), 112-121.

www.revistacampusvirtual.es
Diagnóstico inicial, planificación, ejecución y evaluación.

1. DIAGNÓSTICO INICIAL:
Objetivo:
Identificar las principales deficiencias del proceso de enseñanza-aprendizaje de la Estadística con el trabajo de las herramientas estadísticas para la vinculación con el proceso investigativo.

Acciones:
1. Selección y/o elaboración de instrumentos para poder determinar en qué nivel se encuentra cada estudiante.
2. Determinar los aspectos esenciales del contenido estadístico e informático que debe dominar el estudiante para utilizar la herramienta estadística R.
3. Identificar los conocimientos que posee el estudiante para realizar las investigaciones científicas, así como evaluar el estado de publicaciones que posee el año que cursan.

El diagnóstico se debe realizar desde el primer contacto que el profesor tiene con los estudiantes en el inicio de la asignatura, teniendo en cuenta tanto el aspecto cognitivo como el afectivo y donde los elementos que se conciban en ambos aspectos, deben representar indicadores de los atributos cualitativos del diagnóstico inicial del nivel de asimilación de la herramienta estadística. Además, son los que con mayor exactitud pueden servir de criterios comparativos de cambio, es decir, son de donde deben partir los juicios para lograr la evaluación continua personalizada que se debe concebir durante el resto del curso escolar.

2. PLANIFICACIÓN:
Objetivo:
Planificar las actividades docentes, en función de las dificultades y potencialidades detectadas con el trabajo de la herramienta estadística.

Acciones:
1. Precisar los objetivos a lograr respecto a los conceptos y procedimientos generalizadores del programa de la asignatura.
2. Determinación de los temas de la asignatura
3. Diseño de los objetivos y contenidos de cada tema, interrelación entre ambos.
4. Precisar las fases para el procesamiento de datos utilizando R. (Diseñar o analizar la base de datos a través del R, procesar la base de datos existente y realizar los distintos tipos de análisis estadísticos, e interpretar el resultado obtenido.)
5. Diseño de situaciones didácticas para el fortalecimiento del trabajo con la herramienta estadística R que fomente a la investigación.

3. EJECUCIÓN:
Objetivo:
Concretar lo planificado, lo que implica definir en el proceso de enseñanza-aprendizaje el trabajo con la herramienta estadística, que permita el tratamiento metodológico, estadístico e informático de la información vinculada a las Ciencias Informáticas.

Acciones:
1. Orientar y ejecutar las tareas.
2. Evaluar a través de las tareas el grado de desarrollo y lo que falta para lograr los objetivos de aprendizaje.
3. Analizar el nivel de participación en las tareas de investigación.

4. EVALUACIÓN:
Objetivo:
Eche, L. (2016). Estrategia didáctica para el proceso de enseñanza-aprendizaje de la estadística mediante la herramienta estadística R. Campus Virtuales. 5(2), 112-121.

www.revistacampusvirtuales.es
Evaluar sistemáticamente la aplicación de la estrategia para comprobar el trabajo con la herramienta estadística en el proceso de enseñanza-aprendizaje que permita la vinculación con el proceso investigativo.

Acciones:
1. Evaluar al comienzo de cada tema los conocimientos previos, activándolos y trabajando a partir de estos.
2. Llevar a cabo las modificaciones y ajustes necesarios a partir de la valoración de la actividad de los estudiantes y sus resultados para su aplicación coherente.
3. Valoración de la actividad de los estudiantes y sus resultados en relación con las habilidades de la asignatura.
4. El empleo de entrevistas individuales o grupales, que permitan controlar y retroalimentar el proceso, para valorar su marcha y reorientar sus direcciones y métodos.
5. Plantear en la evaluación situaciones, que requieran de la generalización y transferencia de los conocimientos y habilidades a una nueva situación.

7. Resultados
El empleo de diferentes métodos e instrumentos de investigación demostraron que el uso de las herramientas estadísticas en el proceso de enseñanza-aprendizaje permite al estudiante conocer la importancia de la disciplina y su aplicación en futuras investigaciones.

Para ellos se realizaron visitas a clases de la asignatura Probabilidad y Estadística, con el objetivo de evaluar el uso del asistente matemático en dicho proceso, donde se comprobó que después de aplicada la estrategia el estudiante para el procesamiento de datos fue capaz de:

- Definir los objetivos estadísticos de análisis.
- Analizar si hay algún grupo de comparación.
- Tener en cuenta el tipo de variable.
- Tener en cuenta la forma de presentación de la información.
- Interpretar la información obtenida del procesamiento estadístico a partir del análisis de los objetivos establecidos.
- Elaborar alguna estrategia de solución.

También se observó la aplicación de los estudios estadísticos en los trabajos expuestos en la Jornada Científica Estudiantil, donde se obtuvo:

<table>
<thead>
<tr>
<th>Aplicación de la estrategia</th>
<th>Curso Escolar</th>
<th>Trabajos en JCE</th>
<th>Trabajos con estudios estadísticos</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>2012-2013</td>
<td>23</td>
<td>--</td>
</tr>
<tr>
<td>Si</td>
<td>2013-2014</td>
<td>21</td>
<td>4</td>
</tr>
</tbody>
</table>

Además, se evaluó la efectividad de la estrategia mediante la aplicación del Método Delphi, para conocer la opinión de un grupo de expertos. Inicialmente se escogió una muestra de 37 profesores. De la encuesta de selección, luego de haber valorado el coeficiente de competencia de cada uno, se obtuvo como resultado: 22 con valor Alto, 9 con Medio, y 6 con Bajo. Partiendo de que estadísticamente no deben ser menos de 30 los expertos a escoger, se tuvieron en cuenta los nueve profesores con coeficiente Medio. Por tanto, se realizaron las encuestas restantes a 31 profesores en total.

Luego de aplicada la encuesta se obtuvieron los resultados siguientes con respecto a cada aspecto:

• En cuanto a si la estrategia permite el logro del objetivo por el cual se elaboró, 3 especialistas opinaron Muy Adecuada, 5 de Bastante Adecuada, 15 de Adecuada, 7 de Poco Adecuada y solo uno de No Adecuada.
• Sobre el orden lógico de las etapas de la estrategia, 2 especialistas consideraron que era Muy Adecuada, 17 de Bastante Adecuada, 11 de Adecuada y uno de Poco Adecuada.
• Los especialistas opinaron en cuanto a la realidad de poner en práctica la estrategia: uno de Muy Adecuada, 12 de Bastante Adecuada, 14 de Adecuada, 2 de Poco Adecuada y los restantes 2 de No Adecuada.
• Sobre el nivel de satisfacción de la estrategia como solución al problema de la investigación, 9 especialistas lo consideran de Bastante Adecuada, 13 de Adecuada, 6 de Poco Adecuada y 3 de No Adecuada.
• Para la correspondencia de la complejidad de las actividades teóricas y prácticas a desarrollar por los estudiantes en las tareas propuestas y las particularidades de su desarrollo psíquico, un especialista opinó de Muy Adecuada, 23 de Adecuada, 3 de Poco Adecuada y 4 de No Adecuada.

De manera general, se puede afirmar que el criterio de adecuación que predominó por parte de los especialistas acerca de las valoraciones en la encuesta fue de Adecuado, lo que demuestra que la estrategia didáctica propuesta permite perfeccionar el proceso de enseñanza-aprendizaje de la Estadística mediante el uso de la herramienta estadística R vinculándolo al proceso de investigación.

8. Conclusiones
• La aplicación de métodos e instrumentos de investigación permitieron corroborar el insuficiente trabajo que existe con las herramientas estadísticas en el proceso de enseñanza-aprendizaje vinculado al proceso investigativo.
• El análisis de los asistentes matemáticos en el proceso docente-educativo y los principios didácticos, sustentaron teóricamente una estrategia didáctica para el proceso de enseñanza-aprendizaje de la Estadística utilizando la herramienta R.
• Se logró valorar satisfactoriamente la calidad y factibilidad de la estrategia didáctica, mediante la consulta a especialistas, demostrando que cuando se utiliza la herramienta estadística potenciando la relación entre los componentes académicos, laboral e investigativo, se fortalezca el camino hacia la independencia cognoscitiva en la aplicación de la Estadística en los procesos de investigación científica.

Cómo citar este artículo / How to cite this paper

Referencias
Mijic, J. (2008). Metodología para el perfeccionamiento conceptual de estudiantes universitarios en el Álgebra Básica con el empleo de las Tecnologías de la Información y las Comunicaciones. Disertación doctoral no publicada, Universidad de Camagüey, Camagüey, Cuba.
Ortez, E.; Aguilera, E. (2009). Los estilos de aprendizaje de los estudiantes universitarios y sus implicaciones didácticas en la educación

www.revistacampusvirtuales.es
superior. Rev. Pedagogía Universitaria, X(5).

www.revistacampusvirtuales.es