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We present a number conserving particle-hole RPA theory for collective excitations in the transition 
from normal to superfluid nuclei. The method derives from an RPA theory developed long ago in 
quantum chemistry using antisymmetric geminal powers, or equivalently number projected HFB states, 
as reference states. We show within a minimal model of pairing plus monopole interactions that the 
number conserving particle-hole RPA excitations evolve smoothly across the superfluid phase transition 
close to the exact results, contrary to particle-hole RPA in the normal phase and quasiparticle RPA in the 
superfluid phase that require a change of basis at the broken symmetry point. The new formalism can be 
applied in a straightforward manner to study particle-hole excitations on top of a number projected HFB 
state.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Excitation spectra of nuclei show a tremendous richness and 
diversity, going from low energy collective states to giant reso-
nances. The basic approach for the description of those phenom-
ena is time-dependent mean field with the use of more or less 
sophisticated energy density functionals (EDFs). In the small am-
plitude limit, this means the consistent solution of mean field and 
RPA equations. For superfluid nuclei this has to be generalized to 
Hartree-Fock-Bogoliubov (HFB) and quasiparticle RPA (QRPA) equa-
tions. Many works of this type based on Skyrme or Gogny EDFs 
as well as relativistic HFB exist in the literature, see for example 
[1–6]. The weakness of the HFB approach is that it violates, among 
other symmetries, particle number conservation. This is no prob-
lem in macroscopic superfluid systems. However, in finite nuclei 
this becomes annoying if there is a spread of several units of par-
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ticles in the calculations where one desires a sharp number for 
each nucleus. The restoration of good particle number is techni-
cally feasible with modern projection techniques [7,8] but becomes 
rather cumbersome on the level of QRPA where one has to project 
two-quasiparticle states with a subsequent orthogonalization [9]. 
This might be the reason why only in relatively rare cases it has 
been applied mainly to β and double-β decays [10,11]. Moreover, 
number projected QRPA, being a projection of two quasiparticle 
states, involves a mixture of particle-hole (ph) excitations of the 
A nucleus, particle-particle excitations of the A − 2 nucleus and 
hole-hole of the A + 2 nucleus. At the end one, therefore, one has 
to filter out the most interesting excitations of the A system which 
are then excitations of the ph type. These problems are particularly 
important for transitional regions since there the particle number 
fluctuations are strong and the transition from normal to super-
fluid is rounded due to the finiteness of the system. Crossing the 
superfluid transition requires a change in the reference state from 
a HF Slater determinant to a HFB quasiparticle vacuum. The col-
lective ph excitations described by RPA in the former case and by 
QRPA in the latter yield a sharp transition with a significant kink 
[12].

Collective states with projections, in particular particle number 
projection, have been investigated with the Generator Coordinate 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Method (GCM). However, GCM is generally tailored for large am-
plitude collective motion and only a few collective coordinates 
are considered which are obtained from constrained and symme-
try projected HFB calculations. RPA theory which is considered in 
the present work, on the contrary, treats collective motion in the 
small amplitude limit where collective and non-collective states 
are generally treated on the same footing. A recent paper with 
many references to the GCM-PHFB method can be found in [13]. In 
this situation, we thought it useful to adapt a formalism, known in 
quantum chemistry since many years [14], to the nuclear physics 
case. While in quantum chemistry this formalism has had little 
success due the absence of attractive pairing correlations, for the 
same reason we do believe that it could be extremely useful in 
nuclear structure. In chemical physics it was shown [15] that the 
so-called antisymmetrized geminal power (AGP) state, which is the 
same as the well known number projected HFB (PHFB) ground 
state, is the vacuum of a set of ph operators which kill the PHFB 
vacuum. This remarkable property can be exploited to construct 
a particle-hole RPA (phRPA) approach along the same lines as in 
the standard RPA theory. One adds to the particular set of ph 
killers which play the role of backward terms, their adjoints as the 
forward terms with the corresponding amplitudes and establishes 
with the equation of motion technique the RPA matrix. We call this 
theory number conserving particle-hole RPA (NCphRPA). This new 
particle number conserving technique may be implemented with-
out too much difficulty and effort in the existing QRPA codes to 
collective modes in superfluid nuclei like, e.g., the chain of Sn iso-
topes. Since NCphRPA adds correlations on top of standard ph-RPA 
even at magicity, one could consider all Sn isotopes from A = 100 
to A = 132 and beyond with the same approach.

We will first classify the complete set of ph operators in terms 
of killers of an arbitrary PHFB state, their adjoints and diagonal 
operators. We will then proceed to derive the NCphRPA based on 
the killers and adjoints in complete analogy to the RPA over a HF 
reference state. Finally, we will test numerically this approach in a 
minimal model of pairing plus monopole ph interactions.

2. PHFB killers

Let us start by defining the PHFB wave function of M nucleon 
pairs as a general pair condensate in the canonical basis where the 
density matrix is diagonal

|P H F B〉 = �†M |0〉 , �† =
L∑

i=1

zia
†
i a†

i
, (1)

where the operator a†
i (a†

i
) create a particle in the state i (i). {i, i} is 

a single particle basis with 2L states that has been grouped into L
pairs i and i. The i states are conjugate orbitals to the i single par-
ticle states. These pairs are not necessarily degenerated but have 
the same occupation probabilities 〈a†

i ai〉 = 〈a†
i
ai〉. The free param-

eters zi can eventually be determined variationally as for example 
in HFB with number projected before variation. Similar to a HF 
Slater determinant where it is possible to define a set of killers in 
terms of which the RPA operators are constructed, PHFB has a set 
of killers that we classify into particle killers and spin killers.

• Particle killers:

Cij = zia
†
i a j − z ja

†
j
ai, ∀ i �= j. (2)

• Spin killers:

S+
i j = zia

†
i a j + z ja

†
jai

S−
i j = zia

†a j + z ja
†ai

}
∀i > j. (3)
i j
Note that particle killers move nucleons without changing the 
spin, while spin killers move nucleons flipping the spin. It is 
easy to check that all killers commute with the pair operator (1), 
[Cij, �†] = [S+

i j , �
†] = [S−

i j , �
†] = 0, and therefore, each one of the 

killers annihilates the P H F B wave function (1)

Cij|P H F B〉 = S+
i j |P H F B〉 = S−

i j |P H F B〉 = 0. (4)

The set of killers (2-3), their adjoints and the diagonal operators 
a†

i ai , a†
i
ai , a†

i ai and a†
i
ai form a complete set of 4L2 ph operators 

that generate a U (2L) algebra of particle-hole operators defined by 
the commutators[
a†
αaβ,a†

γ aδ

]
= δβγ a†

αaδ − δαδa†
γ aβ, (5)

where α, β, γ , δ stand for any orbital j and their conjugate, j. 
Within this set there are a total of L(L − 1) particle killers and 
the same number of spin killers. The total number of adjoints that 
create particle-type or spin-type excitations is 2L(L −1). Adding up 
the killers, the adjoints and the 4L diagonals, we obtain the total 
of 4L2 ph operators. The completeness of this set guaranties that 
any ph operator can be expressed as a linear combination of the 
above generators

a†
i a j = 1

z2
i − z2

j

(
zi Ci j − z j C

†
ji

)
,

a†
i
a j = −1

z2
i − z2

j

(
zi C ji − z jC

†
i j

)
,

a†
i a j = 1

z2
i − z2

j

[
zi S+

i j − z j

(
S−

i j

)†
]

. (6)

The denominators that appear in the inversion relations could 
be the source of numerical instabilities in case of level crossings or 
for states deep in the Fermi sea with occupations close to 1. In the 
former case, the pair of approaching levels could be considered as 
effectively degenerated and redefine de killers taking into account 
this degeneracy. In the latter case, it might be possible to consider 
these states as an inert core and exclude them from the numerical 
calculation. On the other hand, degeneracies due to the conserva-
tion of symmetries like the rotational symmetry (spherical nuclei) 
can be explicitly taken into account in the definition of the killers.

Using the commutation algebra of the ph operators (5) it is easy 
to derive the commutation relations between killers

[Cij, S+
pq] = zp S+

iqδ jp + zq S+
ipδ jq,

[Cij, S−
pq] = −zq S−

pjδiq − zp S−
qjδip,

[Cij, C pq] = zp Ciqδ jp − zqC pjδiq,

[S+
i j , S−

pq] = zp(Ciqδ jp + C jqδip)

+ zq(C jpδiq + Cipδ jq),

[S+
i j , S+

pq] = 0, [S−
i j , S−

pq] = 0. (7)

The complete set of commutators including the adjoints and 
diagonals follows in a similar manner.

3. Number conserving particle-hole RPA

We will derive the NCphRPA equations following closely the 
equation of motion method of [16,17] assuming a PHFB pair con-
densate (1) as the reference state. In order to ease the formalism 
we restrict to particle excitations, but the generalization to spin 
excitations is straightforward. In fact, if the PHFB state is axially 
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symmetric, excitations with a given k value of the z component of 
the total angular momentum could be constructed as a mixture of 
particle and spin excitations with the same k.

As usual, we assume that excited states |μ〉 = Q †
μ |0〉 are gen-

erated by collective RPA operators

Q †
μ =

∑
i> j

Xμ
i j D†

i j − Y μ
i j Di j , Dij = Cij√

(z2
i − z2

j )(ni − n j)
, (8)

where the square root is a normalization factor and ni = 〈a†
i ai〉 is 

the occupation probability in the PHFB state. With this definition, 
the backward term annihilates the PHFB state in complete analogy 
to the RPA based on HF.

Moreover, the RPA assumes a killing condition

Q μ |R P A〉 = 0, (9)

for the correlated RPA ground state which later will be relaxed 
replacing it by the PHFB reference state.

We can now check that the RPA operators (8) are properly nor-
malized in the PHFB state

〈P H F B| [Q ν, Q †
μ] |P H F B〉 =

∑
i> j

Xν
i j Xμ

i j − Y ν
i j Y

μ
i j = δμν. (10)

As well as

〈P H F B| [Q ν, Q μ] |P H F B〉 =
∑
i> j

Xν
i j Y

μ
i j − Xν

i j Y
μ
i j = 0. (11)

Together with the closure relations∑
μ

(
Xμ

i j Xμ
kl − Y μ

i j Y μ
kl

)
= δikδ jl, (12)

∑
μ

(
Y μ

i j Xμ
kl − Xμ

i j Y μ
kl

)
= 0, (13)

it allows us to invert the RPA operators

Dij =
∑
μ

Xμ
i j Q μ + Y μ

i j Q †
ν, (14)

D†
i j =

∑
μ

Xμ
i j Q †

μ + Y μ
i j Q ν . (15)

The equation of motion method leads to the RPA equation(
A B

−B∗ −A∗
)(

X
Y

)
= Eμ

(
X
Y

)
, (16)

with

Aijkl = 〈P H F B|
[

Dij,
[

H, D†
kl

]]
|P H F B〉 , (17)

Bijkl = −〈P H F B|
[

D†
i j,

[
H, D†

kl

]]
|P H F B〉 . (18)

Given a transition operator T , its transition matrix element 
Tμ = 〈0| T |μ〉 can be evaluated as

Tμ =
∑
i> j

Xμ
i j 〈P H F B|

[
T , D†

i j

]
|P H F B〉

−Y μ
i j 〈P H F B| [T , Dij

] |P H F B〉 . (19)

In NCphRPA we evaluate expectation values of the A and B ma-
trices and the transition matrices in the PHFB ground state in a 
similar way as the standard RPA replaces the correlated vacuum 
defined by the killing condition by the mean-field reference state, 
either a HF Slater determinant or a quasiparticle vacuum. How-
ever, the inversion relations (6) and (14-15) would allow us to go 
beyond NCphRPA towards self-consistent RPA [18] evaluating most 
of the expectation values in the true RPA vacuum using the killing 
condition.

4. Benchmark with the Agassi model

As a minimal model to benchmark the NCphRPA approximation, 
we will consider a two-level model with pairing and particle-hole 
monopole interactions. The model was introduced by Agassi [19]
as a tool to test many-body theories that deal with the inter-
play between ph and superfluid correlations. It has been studied 
at the mean-field level by Agassi himself [19] and later by Davis 
and Heiss [20]. They derived the phase diagram of the model 
and the collective excitations in each of the phases by means of 
HFB and, phRPA and QRPA approximations respectively. More ad-
vanced many-body methods like the merging of Coupled Cluster 
with symmetry restored HFB theory [21] revived the model as an 
excellent test-bed. Recently, García-Ramos et al. [22] generalized 
the model by the introduction of new interaction terms that give 
rise to an extremely rich phase diagram. We will use here the 
original Agassi model described by a Hamiltonian which is a su-
perposition of the Lipkin model and the two-level pairing model

H = J0 − �

(2 j − 1)

∑
σσ ′

A†
σ Aσ ′ − χ

2(2 j − 1)
[ J 2+ + J 2−], (20)

where σ = ±1 labels each of the two single particle levels with 
degeneracy 2 j, and � and χ are suitably scaled coupling param-
eters for pairing and ph interactions. The pair creations operators 
are

A†
σ =

j∑
m=1

a†
σ ,ma†

σ ,−m, (21)

A†
0 =

j∑
m=1

(
a†
−1ma†

1,−m − a†
−1−ma†

1,m

)
(22)

and the ph operators are

J+ =
j∑

m=− j

a†
1ma−1m = ( J−)†, (23)

J0 = 1

2

j∑
m=− j

(
a†

1ma1m − a†
−1ma−1m

)
. (24)

Fig. 1 shows the phase diagram of the Agassi model at half fill-
ing [20] with a normal (spherical) phase for χ < 1 and � < 1, 
a parity broken (deformed) phase for χ > 1 and χ > �, and a 
superfluid phase for � > 1 and � > χ , for details see [20,22]. In-
terestingly, the model has no stable phase with both symmetries 
broken. We will test and compare the different RPA approxima-
tions along the horizontal line χ = 1

2 which contains sizeable ph 
correlations. As a function of �, it crosses the transition from nor-
mal to superfluid requiring a change of the reference state from 
a Slater determinant (HF) to a quasiparticle vacuum (BCS). Since 
the line χ = 1

2 runs across the normal and superfluid regions that 
preserve parity, we use the following PHFB ansatz at half filling

|P H F B〉 = �† j |0〉 , �† = z− A† + z+ A†
, (25)
−1 1
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Fig. 1. Phase diagram of the Agassi Hamiltonian (20). The dotted line with χ = 1/2
will be used to benchmark the NCphRPA.

where the structure parameters z± can be obtained by a straight-
forward minimization of the energy or by number projected HFB 
calculation before variation. In our case, we expand (25) using a 
binomial

|P H F B〉 =
j∑

l=0

j!
( j − l)!l! zl+z( j−l)

− A†l
+1 A†( j−l)

−1 |0〉 . (26)

Note that for z+ = 0 we recover the HF Slater determinant with 
all particles filling the lower level.

PHFB improves over the mean field used to construct the phase 
diagram taking into account some of the correlations even in the 
normal phase.

Due to the simplicity of the model, we are left with a couple of 
ph operators J+ and J− , in terms of which the killer of the pair 
condensate (25) is

C = z− J− − z+ J+. (27)

It can be easily checked that [C, �†] = 0 and therefore, C anni-
hilates the pair condensate (25). Following the general derivation 
of the NCphRPA, the ph RPA operator is

Q † = X D† − Y D, D = C√
2〈 J0〉(z2+ − z2−)

. (28)

The RPA matrices A and B as defined in (17) and (18) can be 
obtained from the double commutators[

C,
[

H, C †
]]

= −2ε
(

z2− + z2+
)

J 0 + 2
χ

2 j − 1

[
z2− J−2

+z2+ J+2 + z+z−
(

J+ J− + J− J+ − 4 J 02
)]

− 2
�

2 j − 1
(z− − z+)2 A†

0 A0

+ 2
�

2 j − 1
(z− − z+)2

(
A†

1 A1 + A†
−1 A−1

)

+ 4
�

2 j − 1
(z− − z+)

(
z− A†

−1 A1 − z+ A†
1 A−1

)
(29)

and[
C †,

[
H, C †

]]
= 4εz+z− J 0 − 2

χ

2 j − 1
z+z−

[(
J+2 + J−2

)
+

(
z2+ + z2−

)(
J− J+ + J+ J− − 4 J 02

)]
Fig. 2. First excited particle-hole state of negative parity for a system with degen-
eracy j = 10 at half filling. For χ = 0.5, as a function of � the system crosses the 
transition from spherical to superfluid at � = 1. The continuous line represents the 
exact excited state energy, the dashed line NCphRPA, and the doted line the phRPA 
in spherical phase and the QRPA in the superfluid phase. The inset shows the value 
of z = z+

z− along the transition.

− �

2 j − 1
(z− − z+) z−

[
2A†

0 A0

−2
(

A+
1 + A+

−1

)
A−1 − 2A†

1 (A1 + A−1)
]

+ �

2 j − 1
(z− − z+) z+

[
2A†

0 A0

−2
(

A†
1 + A†

−1

)
A1 − 2A†

−1 (A1 + A−1)
]
, (30)

by taking expectation values in the PHFB state (26).
It can be easily checked that NCphRPA reduces to phRPA if we 

replace the PHFB reference state (26) by the Slater determinant 
obtained in the limit z+ = 0 with all particles occupying the lower 
level.

In Fig. 2 we show the excitation energy ω = √
A2 − B2 along 

the line of χ = 0.5, as a function of �. It is compared with the 
phRPA for 0 < � < 1 in the spherical regions and with QRPA for 
� > 1 in the superfluid region [23]. We can see a clear improve-
ment of NCphRPA over both RPA’s, specially around the phase tran-
sition which NCphRPA crosses smoothly, while in the conventional 
RPA one has to change from a number conserving HF basis to a 
number non-conserving quasiparticle vacuum with a consequent 
kink. This improvement could be traced back to the structure of 
the PHFB reference state shown in the inset. This parameter z = z+

z−
displays a smooth behavior across the transition due to the in-
clusion of pair correlations and number fluctuations absent at the 
mean-field level.

In order to test the RPA wave function we evaluate the transi-
tion matrix element of the operator J x = 1

2 ( J+ + J−).

〈P H F B| [ J x, Q †] |P H F B〉 =

(X + Y ) (z+ + z−)

√
〈 J0〉

2
(
z2+ − z2−

) . (31)

In Fig. 3 we show this transition matrix element. Again we see 
a clear improvement of the present approach over the conventional 
RPA’s [23], mainly in the transitional region. The properties of the 
excited state as described by the NCphRPA reflect the net improve-
ment seen in the ground state at the level of PHFB as seen in the 
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Fig. 3. Transition matrix element of J x between the excited state and the GS. The 
inset shows the ground state expectation value of the operator J0. The convention 
for the exact, NCphRPA, and phRPA and QRPA is the same as in Fig. 2.

inset of Fig. 2 as well as in the inset of Fig. 3 for the expectation 
value of J0.

5. Conclusions

In this work we have introduced the NCphRPA following a sim-
ilar approach presented long ago in quantum chemistry. NCphRPA 
starts with a linear transformation of the one particle operators 
such that they can be classified into killers of a PHFB state, their 
adjoints, and diagonals. Based on this new one particle opera-
tors, NCphRPA is derived in a standard way using the equations 
of motion method. The formalism is a straightforward extension of 
phRPA based on a HF determinant as a reference state, and it re-
quires the sole information of the one and two-body density matri-
ces in the optimized PHFB state. In this regard, it is much simpler 
than the number projected QRPA that requires the projection of 
a complete set of two quasiparticle states and the subsequent re-
orthonormalization. The general formalism of NCphRPA developed 
and tested here is ready to be used with density-dependent forces 
treated with PHFB to describe collective motion in transitional and 
superfluid nuclei. Even for magic nuclei, NCphRPA with a PHFB ref-
erence state accounting for some of the pair fluctuations, would 
give non-trivial corrections to phRPA based on a Slater determi-
nant. Therefore, NCphRPA can be used with benefit throughout the 
mass table. These kinds of corrections to phRPA can be seen in 
figures 2 and 3 for 0 < � < 1. We want also to stress that the 
transition from non-superfluid to superfluid nuclei is always com-
pletely smooth since the reference state (PHFB) does not show any 
abrupt change in the crossover. The fact that the NCphRPA uses 
the equation of motion method to derive the RPA equations al-
lows for an improved treatment of the reference in the direction of 
a number conserving self-consistent RPA, by using the RPA killing 
condition and the inversion of the RPA operators. Before closing we 
would like to emphasize the ph character of the NCphRPA. Within 
this formalism particle-particle correlation are only described at 
the level of the PHFB reference state. However, particle-particle 
and hole-hole fluctuations could be taken into account in a sec-
ond RPA based on quadratic killers and quadratic adjoints.
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