A new occurrence of the genus *Tonkinella* in northern Spain and the Middle Cambrian intercontinental correlation

ABSTRACT

The genus *Tonkinella* is a typical polimeroid trilobite in lower Middle Cambrian rocks from Vietnam, Canada, U.S.A., India, Korea, Siberia, China and Argentina. It has recently been found in the Mediterranean region (Iberian Chain, northeastern Spain). In this paper we refer the finding of *Tonkinella* aff. *breviceps* in the Leonian (lower Middle Cambrian) of the Cantabrian Mountains (northern Spain), analysing its stratigraphical position, fossil assemblages, biochronology and utility for intercontinental correlation. The presence of this taxon allows us to make a more accurate correlation between the Middle Cambrian biochronological scales of Laurentia, the Mediterranean area and China.

INTRODUCTION

One of the most significant problems in Cambrian correlation is the strong provinciality of the polimeroid trilobites, which are the main faunas used in Cambrian biochronology (Shergold, 1997). This is why studies of the presence of common trilobite species in different biogeographical realms are one of the lines of research encouraged by the International Subcommission on Cambrian Stratigraphy (I.S.C.S.).

The genus *Tonkinella* is one of the most widespread polimeroid trilobite taxa in lower Middle Cambrian rocks. It was defined in Vietnam by Mansuy (1916) and afterwards was found in India, North America, Korea, Siberia, China and Argentina (see Bordonaro and Baldis, 1987; Sundberg, 1994; Bordonaro and Banchig, 1995; Jell and Hughes, 1997). Recently Liñán and Gozalo (1999) defined *Tonkinella sequei* from the uppermost Lower Cambrian of the Iberian Chain (northeastern Spain), representing the first time *Tonkinella* was found in the Early Cambrian. Moreover, this was the first record of the genus in the Acadobaltic Province.

In this paper *Tonkinella aff. breviceps* Kobayashi, 1934 is cited from the Upper Leonian (lower Middle Cambrian; Liñán et al., 1993) of the Cantabrian Mountains (northern Spain), analysing its stratigraphical position, “Pu” (“u” stands for the German *untere*, lower) in northern Spain (see Sdzuy, 1995; Gámez Vintaned et al., 2000). The meaning and value of this species as a tool for intercontinental correlation is evaluated. *Tonkinella breviceps* has a wide geographical distribution. It has previously been cited in Kashmir (India: Kobayashi, 1934; Reed, 1934; Jell and Hughes, 1997), Korea (Kobayashi, 1935; Chough et al., 2000),...
Alabama, Utah and Nevada (USA: Resser, 1938; Sundberg, 1994), western Newfoundland (Canada: Kindle, 1982; Young and Ludvigsen, 1989) and Siberia (Soloviev, 1989).

GEOLOGICAL AND STRATIGRAPHIC SETTING OF THE LOWER PRESA DEL PORMA SECTION

The fossil described here was found at the lower Presa del Porma section (“Pu”) in León province (northern Spain), whose UTM coordinates are 30T UN 121548. The section is located in the topographic map sheet at scale 1:50.000 named Boñar (number 104 of the cartography of Servicio Geográfico del Ejército Español). From a geological point of view the studied area is located in the Somiedo-Correcilla Domain, within the Cantabrian Zone. The Middle Cambrian Lán cara and Oville Formations which crops out in the area of Presa del Porma were characterised by Sdzuy and Liñán (1993) as representative of the so-called Los Barrios facies (Fig. 1).

The lower Presa del Porma section has been previously studied by Sdzuy (1969, 1995) and Zamarreño (1972). The first author listed the trilobite faunas and showed a biostratigraphic sketch for the upper Lán cara Formation and lower Oville Formation, while the second analysed the stratigraphy and sedimentology of the Lán cara Formation. The fossils studied in this paper come from the lowermost visible strata of the Oville Formation (Fig. 2). At this locality, a thickness of 10 m at the boundary between the underlying Lán cara Formation and the Oville Formation is covered by soil. The covered interval possibly includes the lowest part of the Oville Formation. The rocks containing Tonkinella consist of green shales bearing carbonate nodules and a few levels of very fine green sandstones.

Tonkinella aff. breviceps has been found at the lower Presa del Porma section in beds containing the following trilobites species: Eccaparadoxides asturianus (Sdzuy, 1968), Paradoxides? enormis Sdzuy, 1968, Acadolenus decorus Sdzuy, 1968 and Conocoryphe (Parabailiella) matutina Sdzuy, 1968. The age of this assemblage is Eccaparadoxides asturianus Zone, which characterises the late Leonian in the Mediterranean biochronology (Gozalo and Liñán, 1995; Sdzuy et al., 1999). A late Leonian age for the specimen of Tonkinella aff. breviceps cited here is also supported by the first record of Badulesia tenera (HARTT in Dawson, 1865), which is found some 4 m above in the same succession. The FAD of this species marks the beginning of the Caesaraugustan Stage (sensu Sdzuy et al., 1996). The Leonian/Caesaraugustan boundary has been correlated with the base of the Triplagnostus gibbus or Ptychagnostus gibbus Zone by Sdzuy et al. (1999); see also Gozalo et al. (in this issue).

FIGURE 1: Geological sketch of the Cantabrian Zone showing the Cambrian facies distribution (modified from Sdzuy and Liñán, 1993). The Los Barrios facies records the most complete succession of the Lower-Middle Cambrian carbonate lithological assemblage, while the Beleño facies lacks the reddish, nodular limestones (griotte) of the top of the Lán cara Formation. *: lower Porma section (“Pu”).

SYSTEMATIC PALAEONTOLOGY

Order: Corynexochida KOBAYASHI, 1935
Family: Oryctocephalidae BEECHER, 1897
Subfamily: Oryctocephalinae BEECHER, 1897

GENUS Tonkinella MANSUY, 1916

Type species: Tonkinella flabelliformis MANSUY, 1916

Tonkinella aff. breviceps KOBAYASHI, 1934
Figure 3

Material: A pygidium preserved as inner and outer moulds in green shales from the Oville Formation at the lower Presa del Porma section ("Pu") in León province (northern Spain). Specimen deposited at the Museo Paleontológico de la Universidad de Zaragoza (Zaragoza, Spain) under reference MPZ 2000/3.

Dimensions: Pygidial length is 4.4 mm, axis length 3.1 mm, pygidial width 6.7 mm, axis width 1.55 mm. Posterior pleural segment width is 0.75 mm. Pygidial length is 65% of pygidial width. Posterior pleural segment width is 11% of pygidial width.

FIGURE 3 | A) Pygidium of Tonkinella aff. breviceps KOBAYASHI, internal mould, x 5, MPZ 2000/3. B) Latex cast of the external mould, same specimen.

FIGURE 4 | Distribution of Tonkinella species based on the number of axial rings and relative width of the posterior pleural segment (modified from Sundberg, 1994).
Remarks: *Tonkinella breviceps* has recently been comprehensively described from undistorted limestone specimens by Sundberg (1994). Also, the type material has been reviewed by Jell and Hughes (1997), who chose the lectotype and refigured the type. Sundberg (1994: p. 35, fig. 23) used the relative width of the posterior pleural segment and the number of axial rings to recognise four groups of pygidia within the genus *Tonkinella*. *T. aff. breviceps* is placed within the *T. breviceps* group (Fig. 4). The pygidium described here shows the same features as the material described and/or figured by Sundberg (1994) and Jell and Hughes (1997), and its size is included within the specific variability.

Although the Spanish pygidium shows the main characteristics of *T. breviceps* pygidia, we prefer to keep our specimen in open nomenclature because we have not yet found any cranidium.

DISCUSSION: AGE, CORRELATION AND BIOGEOGRAPHY

According to Whittington (1995), the youngest known orycteroccephalid trilobite appears to be a species of *Tonkinella*. The same author interpreted *Tonkinella* species from North America, Vietnam and Siberia as occurring at a similar level. Chang (1988: p. 69) placed the Vietnamese specimens in the Hsuchuangian Stage. Jell and Hughes (1997: text-fig. 4) and Hughes and Jell (1999: fig. 2) placed the Himalayan *Tonkinella* in the same Stage. *Tonkinella* was found at the highest part of the Amgan Stage in...
Siberia (Astashkin et al., 1991: p. 68). Nevertheless, the most continuous record of Tonkinella has been found in the Great Basin of North America by Sundberg (1994).

T. breviceps appears in the Altiocculus Subzone (uppermost Ehmanniella Zone) defined by Sundberg (op. cit.), who wrote (p. 11): “As defined here, the Altiocculus Subzone also incorporates the upper part of the Ptychagnostus praecurrensagnostoid Zone and the majority of the P. gibbusagnostoid biozone.” The occurrences of this species from other countries are of a similar age (Sundberg, 1994; Jell and Hughes, 1997; Fig. 5).

The level containing Tonkinella aff. breviceps in Spain can be correlated with the level just below the FAD of Triplagnostus gibbus (see above). In consequence, we tentatively correlate the level with Tonkinella aff. breviceps with the lower part of the Altiocculus Subzone, particularly with the levels preceding to the Triplagnostus gibbus FAD.

Biogeographically, Tonkinella species are widely distributed in lower latitudes at the early Middle Cambrian (Fig. 6), in accordance with the palaeogeographical reconstruction proposed by McKerrow et al. (1992). They appear within the tropical carbonate development zone suggested by Courjault-Radé et al. (1992) for the continental margins of Gondwana. Tonkinella species from Lower Cambrian deposits of the Precordillera of San Juan, Argentina, support the idea of the presence of this family in the tropical carbonate development zone. However, the occurrence of the Altiocculus Subzone in the Great Basin of North America by Sundberg (1994) and the presence of the binderi Zone or the Lower Altiocculus Subzone in the Great Basin of North America by Sundberg (1994) also implies a correlation suggested by Sdzuy et al. (1999) for the Uppermost Altiocculus Subzone also incorporates the upper part of the Ptychagnostus praecurrensagnostoid Zone and the majority of the P. gibbusagnostoid biozone.” The occurrences of this species from other countries are of a similar age (Sundberg, 1994; Jell and Hughes, 1997; Fig. 5).

The level containing Tonkinella aff. breviceps in Spain can be correlated with the level just below the FAD of Triplagnostus gibbus (see above). In consequence, we tentatively correlate the level with Tonkinella aff. breviceps with the lower part of the Altiocculus Subzone, particularly with the levels preceding to the Triplagnostus gibbus FAD.

Biogeographically, Tonkinella species are widely distributed in lower latitudes at the early Middle Cambrian (Fig. 6), in accordance with the palaeogeographical reconstruction proposed by McKerrow et al. (1992). They appear within the tropical carbonate development zone suggested by Courjault-Radé et al. (1992) for the continental margins of Gondwana. This interpretation is in accordance with Shergold’s (1969) idea of considering the ooyocephalid as a tropical fauna. The intercontinental distribution of Tonkinella in Laurentia, Siberia and Gondwana may be interpreted as a result of its pelagic habit, at least during a larval phase.

CONCLUSIONS

In summary, the presence of Tonkinella aff. breviceps allows us to make a more accurate correlation between the Middle Cambrian biochronological scales of Laurentia, the Mediterranean area and China (Fig. 5). Accordingly, the Eccaparadoxides asturianus Zone is an equivalent of the upper part of the Triplagnostus praecurrens Zone or lower part of the Altiocculus Subzone in the Great Basin (U.S.A.). This new datum is in agreement with the general correlation suggested by Sdzuy et al. (1999) for the Upper Leonian, and represents the first correlation point between the Spanish and Kashmirian Cambrian.

ACKNOWLEDGEMENTS

We wish to thank Dr. Fred Sundberg and Dr. Nigel Hughes for their comments on the genus Tonkinella, and Dr. Osvaldo Bordonaro, Dr. Franco Tortello and Dr. Cabrera for their comments on the manuscript. We acknowledge support from the Dirección General de Investigación, Project BTE2000-1145-C02 01 and 02. Mª Eugenia Dies enjoys a predoctoral research grant from the Diputación General de Aragón.

REFERENCES

Faunas of South Chosen with a special study on the Cambrian Trilobite Genera and Families. Journal of the Faculty of Science, Imperial University of Tokyo (section 2), 4(2), 49-344.

Zamarreño, I., 1972. Las litofacies carbonatadas del Cámbrico de la Zona Cantábrica (NW de España) y su distribución paleogeográfica. Trabajos de Geología, Universidad de Oviedo, 5, 1-118.

Manuscript received October 2001; revision accepted May 2002.