Grazing activity as taphonomic record of necrobiotic interaction: A case study of a sea turtle carapace from the Upper Jurassic of the Prebetic (south Spain)

Matias Reolid¹*, Ana Santos², and Eduardo Mayoral²

¹Departamento de Geología, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
²Departamento de Geodinámica y Paleontología, Facultad de Ciencias Experimentales, Campus de El Carmen, Universidad de Huelva, Avda. 3 de Marzo s/n, 21071 Huelva, Spain.
*mreolid@ujaen.es

ABSTRACT

Bioerosion trace fossils can shed light on the ecological interactions between species. Here we describe an unusual case of bioerosion on a turtle carapace of *Hispaniachelys prebetica* from the Oxfordian (around 155 Ma, Upper Jurassic) of the Prebetic (Betic Cordillera, South Spain). The specimen was found in a limestone bed of a marl-limestone rhythmite. Morphological analysis of the bioerorative structures reveals the dominance of epigenic traces produced by the grazing activity of regular sea urchins (ichnospieces *Gnathichnus pentax*). No other bioerosion structures are present. From an ethologic point of view only epigenic traces (pascichnia) are present. *Gnathichnus pentax* records short-term bioerosion produced exclusively on the carapace before its burial. The ichnological assemblage recorded herein typifies the *Gnathichnus* Ichnofacies. The carapace was the most favourable hard substrate for grazers in comparison to the surrounding muddy soft bottom. The carapace was oriented convex-down when found in the rock. Therefore, pascichnial activity probably occurred early after the death and accumulation on the sea floor of the turtle remains, but before the carapace was overturned by large scavengers. The low degree of fragmentation and the low dispersion of skeletal components indicate a low-energy environment and early burial in the sea bottom.

Key words: Turtle carapace; bioerosion; *Gnathichnus*; gnawing organisms; regular echinoids; Upper Jurassic.

INTRODUCTION

The breakdown of hard substrates by boring and gnawing organisms, known as bioerosion (Neumann, 1966), is important in understanding the biology of ancient ecosystems (Taylor and Wilson, 2003). Regular echinoids are among the most important of the epilithic grazers in both temperate and tropical marine ecosystems, where they cause considerable rock destruction in their quest for food. The work of these organisms is commonly preserved in the fossil record (e.g. Bromley and Asgaard, 1993a; Gilbert et al. 2007; Santos et al. 2008, 2011; Johnson et al. 2011; Gudveig Baarli et al. 2013) with two ichnotaxa named *Circellites* Mikulás, 1992 and *Gnathichnus* Bromley, 1975. The latter, which is a characteristic star-shaped scratch resulting from grazing activity, is the one that concerns us here.

Known from the Middle-Late Triassic (Fürsich and Wendt, 1977) to the present, this bioerorative structure occurs mainly on skeleton of organisms (e.g., Bromley, 1975; Fürsich and Wendt, 1977; Radwański, 1977; Voigt, 1977, 1979; Martinell, 1981, 1982; Nicosia, 1986; Wilson, 2003; Radley, 2006; Gilbert et al., 2007; Lach et al., 2014) and more rarely upon rock clasts (e.g., Bromley and Asgaard, 1993a, b; Mayoral and Muñiz, 1996; Steinthorsdottir et al., 2006). Twitchett (1994) and Danise et al. (2014) identified and figured star-shaped gnawing traces produced exclusively sobre el caparazón previamente a su enterramiento. La asociación registrada tipifica la icnofacies de *Gnathichnus*. El caparazón fue el sustrato duro más favorable para los erizos irregulares raspadores en comparación con el fondo blando circundante. El caparazón se encontró en el afloramiento en posición invertida dentro de la capa caliza. Así, la colonización del mismo probablemente ocurrió en una fase temprana, tras la muerte del organismo y su acumulación en el fondo, pero antes de que el caparazón fuera girado a una posición invertida, probablemente por la acción de grandes carroñeros. El bajo grado de fragmentación y la escasa dispersión de los elementos del esqueleto apuntan a una baja energía en el medio así como un enterramiento relativamente rápido.

Palabras clave: Caparazón de tortuga; bioerosión; *Gnathichnus*; organismos raspadores; equinoides irregulares; Jurásico Superior.
of regular echinoids on an ichthyosaur rib bone from the Upper Jurassic of England. A recent study by Cione et al. (2010) thoroughly describes our knowledge of *Gnathichnus* in vertebrate skeletal substrates. These authors reported evidence of etching on penguin bones from the Miocene of Argentina providing new information on taphonomic issues. Meyer (2011) reported the occurrence of the ichnotaxon *Gnathichnus pentax* on two specimens of Kimmeridgian marine turtles from Solothurn (Switzerland) and suggested the extinct echinoid *Hemicidaris mitra* (Agassiz) as the producer of these stellate grooves.

Here, we focus on a detailed description and interpretation of echinoid grazing traces on a fossil sea turtle carapace (*Hispaniachelys prebeticida*) aged more than 155 Ma (Upper Jurassic) from the Prebetic (Betic Cordillera, South Spain). In this case, the trace fossils provide valuable data for the study of certain palaeoecological and taphonomic aspects in marine hard substrate communities. In this context, we characterize the ichnoassemblage recognized on the carapace and relate it with the taphonomic history of the sea turtle.

**GEOLOGICAL SETTING**

The turtle specimen was found in the upper Oxfordian (Upper Jurassic), at the Riogazas-Chorro section (RGCH) of the External Prebetic, the northernmost part of the Betic Cordillera in southeast Spain (Figure 1). The sequence is a well-stratified marl-limestone rhythmite measuring 22 m thick (Olóriz et al., 2002, 2003), with a sponge-microbialite buildup at the base. The turtle was found in limestone bed 62, which according to the ammonite biostratigraphy of this section (Olóriz et al., 1999) corresponds to the *Bimammatum* ammonite Biozone (upper Oxfordian). The rocks are sediments deposited in a mid-shelf environment on a carbonate epicontinental shelf system (Reolid et al., 2008). According to taphonomic and palaeoecological analysis of the macroinvertebrate assemblages, the sedimentary setting has been interpreted as a softground with a depth of ~60–80 m (Reolid, 2003; Olóriz et al., 2006).

The microfacies is a fine-grained wackestone with peloids, and there are no sedimentary structures indicating turbulence. The marl-
Grazing activity as taphonomic record of necrobiotic interaction

Limestone rhythmites represent fluctuations in carbonate productivity and delivery of siliciclastic material derived from the proximal Iberian palaeomargin, which is defined by the extent of the Triassic sediments composing the Tabular Cover immediately to the north (Olóriz et al., 2003, 2006; Reolid et al., 2008).

The rich fossil invertebrate fauna of the RGCH section has been extensively studied (Olóriz et al., 2002, 2003, 2006; Reolid, 2003; Reolid et al., 2008). *Hispaniachelys prebetica* is the only known tetrapod from the Jurassic of the Betic Cordillera and is the oldest turtle from southern Europe (Slater et al., 2011).

The macroinvertebrate fossil assemblage in the RGCH section is clearly dominated by ammonoids (84%), followed by belemnites (13%). Benthic macroinvertebrates are in a minority (3%) being only abundant in the sponge-microbialite buildups (Reolid, 2011). *Chondrites* and *Planolites* ichnogenus are presented, whereas *Thalassinoides* is very rare. The proportions of macroinvertebrates (51 specimens) in the bed in which the turtle remains were recorded (RGCH-62) are also dominated by cephalopods (ammonites 78%, belemnites 10%) over benthics (12%). The ammonoids are mainly *Sowerbyceras* (45%), *Haploceratacea* (27%) and perisphinctoids (17%). Among the benthic forms, bivalves (50%) and irregular echinoids (17%) are most common; brachiopods and regular echinoids are rare.

**ANALYSED MATERIAL**

The material studied and illustrated here is the holotype of *Hispaniachelys prebetica* and is housed in the Museo de Paleontología of the Universidad de Granada (Spain) under the reference number RGCH-62-52. The specimen is a moderately large turtle including the majority of the carapace and plastron (Figure 2). The carapace is thick and fully ossified, measuring 43 cm long and 34 cm wide. In addition, some disarticulated cervical and thoracic vertebrae, some of the post cranial bones of the skeleton (such as the dorsal vertebrae, and the scapula) were recorded. A detailed description of the preserved elements of the skeleton is given by Slater et al. (2011).

The carapace does not show signs of flattening or disarticulation. The plastron collapsed into the carapace, as the specimen was preserved in a carapace-down orientation, and consequently the plastron is broken up but still relatively well preserved. A number of isolated fragments of the carapace are also present. The remains are preserved as phosphate (francolite). The degree of fragmentation is low and appears largely to affect the distal parts of bones, which are fractured and not rounded.

On the external surface of the carapace there are groups of pentaradiate grooves which cover it extensively, and which frequently overlap each other, covering areas of about 7–8 cm² (Figure 3a). Visual examination indicates that these bioerrosive structures are epigenic traces produced by the grazing activity of regular echinoids (vagile herbivores/omnivores). No other bioerosion structures were identified on the surface of the carapace, although incorrectly Slater et al. (2011) identified the ichnofossil *Entobia*. The plastron and other bones do not have trace marks on their surfaces. Also, the surface of the carapace does not carry an episkeletozoan fauna.

**ICHNOLOGICAL STUDY ON THE TURTLE CARAPACE**

**Ichnogenus Gnathichnus Bromley, 1975**

**Type.** Ichnospecies *Gnathichnus pentax* Bromley, 1975

**Diagnosis.** Biogenic sculpture consisting of grooves, pits, and scratches on hard substrates (from Bromley, 1975).

Figure 2. General view of the Upper Jurassic turtle *Hispaniachelys prebetica*, RGCH-62-52 (Riogazas-Chorro section, Betic Cordillera, southeast Spain).
their rasping traces produced by radular erosion do not produce a cophores are other groups of organisms that graze on hard substrates foraging is generally a series of highly irregular scratches, pits, and can produce groups of subparallel scratches. Yet, the result of such sea urchins. left by the sharp spines that are arranged around the mouth of the traces on Kimmeridgian carapaces from the Solothurn Turtle Limestone in Switzerland.

The producers of these bioerosions likely exploited all trophic resource on the surface of the turtle carapace. The outermost layer of the carapace mainly consists of the fibrous protein β-keratin (glycine-proline-tyrosine rich proteins) (Alexander, 1970; Espinoza et al., 2007; Dalla Valle et al., 2009) probably a source of protein for scavengers. Moreover, carapace epibionts colonizing this horny material composing the turtle scutes were probably present at the time of death. Studies of Recent turtles show that green and red algae grow epizooxically on aquatic turtles (Neil and Allen, 1954; Caine, 1986; Frick et al., 1998; Pfaller et al., 2008; among others). This algal growth always supports a crustacean microcommunity, including cladocerans, copepods, ostracods and amphipods (Neil and Allen, 1954). Encrusting epizoobionts have been described on carapaces of Recent sea turtles such as Caretta caretta and Dermochelys coriacea (Frazier et al., 1985, 1992; Caine, 1986; Graumenz, 1988; Frick et al., 1998, 2000, 2004; Pfaller et al., 2008) including bivalves (e.g. Ostrea and Crassostrea), annelids (e.g. Filograna, Subellaria and Serpula), cirripeds (e.g. Balanus) and bryozoa. Algal growths, microcrustacean and others epizoobionts were potential trophic resources for grazers and scavengers. However, they were fixed on the protein composing the turtle scutes and they are not recorded on the fossil material.

Moreover, the sea urchins Arbacia punctulata and Lytechinus variegatus have been reported as epizoobionts on specimens of Caretta caretta hosting the green algae Acetabularia crenulata and Chaetomorpha linum (Pfaller et al., 2008). These sea urchins were likely grazing algae from the carapace. However, in fossil specimens such as Hispaniachelys prebetica it is not possible to recognise this type of relationship.

Taphonomic interpretation

The low degree of fragmentation and the low dispersion of skeletal components of the turtle are consistent with a low-energy environment and rapid burial. This is congruent with the absence of any sedimentary structures indicating turbulence and is also supported by the microfossils comprising a fine-grained wackestone with peloids. Previous taphonomic studies on macroinvertebrate assemblages (primarily ammonoids) have indicated a low energy and low degree of fragmentation within a softground in a mid-shelf environment (Reolid, 2003; Olóriz et al., 2006). A convex-down position of a turtle carapace prevents or slows down disarticulation, as shown in burial experiments using hawksbill turtles (Meyer, 1991).

The burial orientation of the H. prebetica may have arisen from post-mortem activity of large scavengers (Slater et al., 2011). The action of scavengers is cited as a further possible reason for carapace-down burial of terrestrial turtles in both modern and fossil death assemblages from fluvial deposits, in studies of turtle taphonomy by Corsini et al. (2006) and Corsini and Chamberlain (2009). However, Brand et al. (2000) observed high variability of orientations of turtle carapace in lacustrine and fluvial deposits (Middle Eocene, Wyoming), with common upside down orientations. The fragmentation of some bones of Hispaniachelys prebetica could also be related to scavenging activity by larger organ-
Figure 3. Echinoid grazing traces, *Gnathichnus pentax*, on the *Hispaniachelys prebetica* turtle carapace from the Prebetic (Betic Cordillera, South Spain). a) External surface of *Hispaniachelys prebetica* carapace entirely sculptured with traces produced by the grazing activity of regular echinoids (*Gnathichnus pentax*). Scale bar 20 mm. b) Detail of *Gnathichnus pentax* showing the characteristic pentaradiate morphology. Scale bar 5 mm. c) Compound star-shaped morphology produced by the repetition of overlapping pattern. Scale bar 5 mm. d) Detail of *Gnathichnus pentax* compound morphology. Scale bar 5 mm. e) Sinuous grooves overlapping star-shaped patterns of *Gnathichnus pentax*. f) Further detail of the sinuous grooves overlapping star-shaped patterns of *Gnathichnus pentax*. Scale bar 5 mm. g) Vicinity of a suture line on *Hispaniachelys prebetica* where the lengths of the radius are longer and the grooves became densely packed and more or less parallel. Scale bar 5 mm.
isms, since the water energy was likely too low to cause the breakage of bones (supported by the very low fragmentation present in ammonoids of the bed RGCH-62). The plastron presumably collapsed under sedimentary loading.

The distribution of bioerosion indicates preferential exploitation of the carapace. The external surface of the carapace was oriented downwards in the bed, and so pascichnial activity probably occurred prior to overturning of the carapace. According to the studies of Meyer (1991) in intertidal sandy environments, a carapace buried convex-up was completely disarticulated within ten days, whereas a carapace buried convex-down was still almost intact after fifteen days, although it has to be used with caution as an argument to understand the pre-burial taphonomic processes in this case study. However, Brand et al. (2003) conducted an experimental study of decay and disarticulation of freshwater turtles (Trachemys scripta) and the carapace was disarticulated in more than 15 weeks. The disarticulation times of Brand et al. (2003) have to be taken with care due the experiment eliminated scavenging and distort the taphonomic process, and the experiment was conducted in aquaria with a filter system to reduce the buildup of bacteria in the water. Therefore, following the disarticulation times proposed by Meyer (1991), the exploitation of the study carapace by regular echinoids likely occurred early after the accumulation of the turtle remains on the sea floor but before the overturning of the carapace by large scavengers. This presumably explains the absence of bioerosion on the plastron, which would have been buried and so sheltered from borers and grazers. The collapse of the plastron is congruent with the early burial beneath loose sediment, causing it to cave in to the internal cavities.

The grazer’s action presumably occurred when the turtle carapace was already covered by algae during its stay on the sea floor. In an environment like this, where soft bottoms were widespread, the skeletal fragments were the only hard substrates, which were available during its stay on the sea floor. In a cave in to the internal cavities.

According to Slater et al. (2011), the thick, heavily ossified carapace of Hispanichelys prebeticus would have been a useful adaptation in a coastal marine habitat where manoeuvrability and protection are more important than weight reduction and energy conservation. Ocean wandering turtles today reduce drag by having a shallow streamlined shell. Probably the fossil turtle lived in shallow coastal environments within the shallow euphotic zone confirming the possibility of algal encrustation during life, which were exploited as a trophic resource by sea urchins and other organic material encrusting the carapacial bone. No epibionts were found encrusting the specimen, even though barnacles and algae are common epibionts in recent living turtles (Pfaller et al., 2008; among others). Many barnacle species are found exclusively attached to turtle shells today, although these would be removed when the turtle died and the dermal scutes to which they were attached rotted away (Pfaller et al., 2006, 2008).

According to Slater et al. (2011), the thick, heavily ossified carapace of Hispanichelys prebeticus would have been a useful adaptation in a coastal marine habitat where manoeuvrability and protection are more important than weight reduction and energy conservation. Ocean wandering turtles today reduce drag by having a shallow streamlined shell. Probably the fossil turtle lived in shallow coastal environments within the shallow euphotic zone confirming the possibility of algal encrustation during life, which were exploited as a trophic resource by sea urchins after the death of the turtle.

Therefore, the bony plates of the carapace, the protein-rich scutes and algal encrustations could have been the trophic resource grazed by the sea urchins producing the Gnathichthus pentax trace fossil. However, bioerosion of the bone result an extra work if they were simply grazing on algae, and the grazing on the bone for obtaining phosphate is an additional possibility.
The low degree of fragmentation, the absence of encrusters and the low dispersion of skeletal components are consistent with a low-energy environment and early burial after the accumulation of the remains on the sea floor.

ACKNOWLEDGEMENTS

Financial support was received from the Ministry of Economy and Competitiveness of Spain in the form of a Ramón y Cajal contract to M. Reolid (reference RYC-2009-04316) and, by a contract to A. Santos as part of the Program to Strengthen Capacities in I+D+i convened by the University of Huelva. Financial support was also provided by the Junta de Andalucía (Spanish government) to the Research Groups RNM276 and RNM200 and by the projects CGL 2010-15372/BTE and PO-RNM-3715. The authors are indebted to the reviewers Joseph A. Corsini (Eastern Oregon University) and Mark A. Wilson (College of Wooster) for their valuable comments. We are also grateful to Prof. Michael J. Benton by the comments made in an early version and during the research stay of M. Reolid in the University of Bristol.

REFERENCES

Bromley, R.G., 1975, Comparative analysis of fossil and recent echinoid bioerosion: Palaeontology, 18, 725-739.
Dallá, L., Nardi, A., Toni, E., Menna, D., Abalardi, L., 2009, Beta-keratins of turtle shell are glycine-proline-tyrosine rich proteins similar to those of crocodilians and birds: Journal of Anatomy, 214, 284-300.
Kier, P.M., Grant, R.E., 1965, Echinoids distribution and habits, Key Large coral reef Reserve, Florida: Smithsonian Miscellanea Collection, 149, 1-68.
Johnson, M.E., Baarli, B.G., Santos, A., Mayoral, E., 2011, Ichnofacies and microbial build-ups on Late Miocene rocky shores from Menorca (Balearic Islands), Spain: Facies, 57, 255-265.
Mikuláš, R., 1992, Early Cretaceous borings from Stromberk (Czechoslovakia): Casopis pro mineralogi a geologi, 37, 297-323.
Olóriz, F., Reolid, M., Rodríguez-Tovar, F.J., 2003, A Late Jurassic carbonate ramp colonized by sponges and benthic microbial communities (External Prebetic, southern Spain): Palaios, 18, 528-545.
Distribution patterns of epibionts on the carapace of loggerhead turtles, *Caretta caretta*: Marine Biodiversity Record, 1(e36), 1-4.


Radley, J.D., 2006, Grazing bioerosion on oyster concentrations (Lower and Middle Jurassic, England): Ichnos, 13, 47-50.


Twitchett, R.J., 1994, Preparation of a disarticulated *Ophthalmosaurus* skeleton to retain important taphonomic details: Geological Curator, 6, 7-10.


Voigt, E., 1979, Wann haben sich die Feuersteine der Oberen Kreide gebildet?: Nachrichten der Akademie der Wissenschaften in Göttingen, Matheatische-Physikalische Klasse, 6, 75-127.


Manuscript received: December 4, 2014
Corrected manuscript received: January 21, 2015
Manuscript accepted: February 3, 2015