Evolución tectonotermal del Macizo Hercínico de Rehamna en la región de Skhour - Ouled Hassine - Lalla Tittaf (Meseta Occidental, Marruecos)

Tectonothermal evolution of the Hercynian Rehamna Massif in the Skhour - Ouled Hassine - Lalla Tittaf region (Western Meseta, Morocco)

A. M. Aghzer y R. Arenas

ABSTRACT

In the Rehamna Massif, in the Moroccan Hercynian Belt, metamorphic peak conditions in the U - T part of the amphibolite facies were reached during the development of a intermediate P/T - barrovian like - metamorphism, which it is related to a first compressive tectonic regime. The regional baric peak is essentially coincident with the thermal peak and shows moderate variations in the different domains of the massif, which can be considered as strictly related to their relative structural positions. The syn - late - D2 extensional regime was caused by the gravitational collapse of the thickened crust, which was thence affected by a pronounced and probably fast uplift. This extension caused a general post - peak decompressive and slightly retrogressive P - T path, coeval with the approach between Eastern Rehamna and Central Rehamna.

Key words: barrovian metamorphism, mineral chemistry, thermobarometry. Rehamna massif.

Geocaceta, 18 (1995), 195-198
ISSN: 0213683X

Introducción

El Macizo de Rehamna registra un metamorfismo de afinidad barroviense, cuyas características fundamentales han sido analizadas por Aghzer y Arenas (In press; incluido en este mismo volumen). El dominio oriental ocupa la posición estructural culminante, estando separado del dominio central subyacente (Manto de Skhour) por medio del límite tectónico oriental de la ZCOZ, cuya interpretación como una zona de cizalla dúctil aditiva ha sido discutida también previamente en este mismo volumen. Ambos dominios registran por tanto una evolución metamórfica parcialmente común, pero algo diferencial en función de sus distintas posiciones estructurales. De este modo, la Formación de Skhour (Rehamna Central) y las formaciones culminantes de El Boumni - Ouled Hassine y de Lalla Tittaf (Rehamna Oriental), alcanzan picos térmicos de condiciones P - T máximas y mínimas, respectivamente. El objetivo principal de este trabajo consiste en la cuantificación termodinamométrica de la historia P - T, lo que unido al conjunto de datos estructurales permitirá precisar las líneas fundamentales de la evolución tectonotermal de este fragmento de la Cadena Hercínica Europea - Africana.

Características metamórficas y mineralógicas

La evolución metamórfica del Macizo de Rehamna está relacionada con el desarrollo de un régimen tectónico inicialmente compresivo, al que sucede en el tiempo un colapso extensional que restaura el equilibrio en la corteza engrasada; el primer régimen está acompañado por el desarrollo de metamorfismo progrado de media P/T tipo barroviense, mientras que el régimen extensional tiene lugar bajo condiciones metámorfas esencialmente retrogradadas. En el Manto de Skhour, la asociación mineral característica de la zona de la clorita durante D1 y D2 está constituida por clorita + mica blanca + cuarzo + estilpnomelana + plagioclase + ilmenita + rutilo. La zona de la biotita está caracterizada por la aparición de este mineral y la desaparición de la estilpnomelana en los niveles más profundos; el granate y la estaurolitia aparecen al comienzo de sus zonas metamórficas respectivas, paralelamente a una disminución progresiva de los contenidos modales en moscovita y clorita. Asociaciones comparables se encuentran también en las formaciones culminantes de Rehamna Oriental; con la excepción de las asociaciones de la zona de la clorita, que fueron desarrolladas durante D1, las asociaciones minerales encontradas en este dominio resultan exclusivamente contemporáneas de la segunda fase de deformación. Por último, la asociación mineral presente en las metamasis intercaladas en la zona de la estaurolitia de Rehamna Oriental está constituida por bomblena + plagioclase + cuarzo + calcita + clinocrosita ± granate ± ilmenita ± rutilo ± esfena.

Los granates sin - D2 de las metamafitas y semipelíticas de la Formación de Skhour son ricos en almandino, espesaratita y grossularia, y pobres en piropo. Las composiciones medias de sus núcleos (Alm 61.81Sp 21.98 Pp 4.84 Grs 11.37) y de sus bordes (Alm 67.22 Sp 17.10 Pp 5.69 Grs 9.99), definen un gradiente de composición indicativo de que su crecimiento tuvo lugar bajo condiciones metamórficas progradadas (Tracy, 1982). Los granates sin - D2 de la misma forma son igualmente ricos en almandino, espesaratita y grossularia, y pobres en piropo; la composición media de sus núcleos (Alm 72.57 Sp 14.34 Pp 5.63 Grs 7.46) es más rica que la de los bordes (Alm 79.05 Sp 7.01 Pp 7.56 Grs 6.38) en espesaratita y grossularia, y más pobre en piropo y almandino. Estas diferencias de composición sugieren que la zonación es de crecimiento prograde, mostrando también un carácter
Fig. 1.- Diagrama P - T mostrando los resultados termobarométricos obtenidos para las asociaciones metamórficas sin - D₂ y sin - D₁ de las zonas del granate y de la estaurolita de la Formación de Skihour. Terminología: grt - chl (Ghent et al., 1987); grt - bt (Ferry y Spear, 1978; Hodges y Spear, 1982; Holness, 1986); grt - ms (Hynes y Forest, 1988). Barrómetro GRIPS (Bohlen y Liotta, 1986): 1 y 2, asociaciones sin - D₂, y sin - D₁, respectivamente, de la zona del granate; 3 y 4, asociaciones sin - D₂ y sin - D₁, respectivamente, de la zona de la estaurolita. Límites de estabilidad de los polimorfos de silicato aluminico, según Holdaway (1971). Abreviaturas minerales según Kretz (1983).

Fig. 1.- P - T diagram showing the thermobarometric results obtained in the syn - D₁ and syn - D₂ mineral assemblages of the garnet and staurolite zones of the Skihour Formation. Terminology: grt - chl (Ghent et al., 1987); grt - bt (Ferry & Spear, 1978; Hodges & Spear, 1982; Holness, 1986); grt - ms (Hynes & Forest, 1988). Barrometer GRIPS (Bohlen & Liotta, 1986): 1 and 2, syn - D₁ and syn - D₂ garnet zone assemblages, respectively; 3 and 4, syn - D₁ and syn - D₂ staurolite zone assemblages, respectively. Stability fields of the Al₂SiO₅ according to Holdaway (1971). Mineral abbreviations according to Kretz (1983).

esencialmente continuo. Los mismos gradientes de composición, aunque más acusados, se desarrollan también entre los núcleos (Alm 59.80 Sps 21.72 Ppr 3.25 Grs 15.23) y los bordes (Alm 74.65 Sps 9.75 Ppr 5.04 Grs 10.56) de los granates sin - D₂ de las formaciones de Rehanna Oriental.

Las micas blancas sin - D₂ y sin - D₁ de las zonas de la clorita y de la biotita son fengitas (Si > 3.1; Guidotti, 1984); las de las zonas del granate y de la estaurolita, menos ricas en sílica (Si < 3.1), son moscovitas. Las cloritas orientadas en la S₁ o en la S₂ son rigidolitas (Hey, 1954) con una relación Mg/Fe que aumenta de manera sistemática desde la zona de la clorita hasta la del granate, lo que puede interpretarse como relacionado con la progresión tectal (Miyashiro, 1973). El quimismo de las biotitas que definen las fácies planares S₁ o S₂, tiende hacia los términos flogopita - anfíbita en la zona de la biotita, muestra una composición intermedia en la zona del granate, y presenta una tendencia neta hacia los términos easonita - siderófilita en la zona de la estaurolita.

La composición de las plagioclásicas sin - D₁, evoluciona paralelamente al incremento de la temperatura: son albítas (An 0.87-1.55) en la zona de la biotita, mientras que consisten en oligoclasas en las zonas del granate (An 12) y de la estaurolita (An 19). Las plagioclásicas sin - D₁, analizadas pertenecen a las zonas del granate y de la estaurolita; son oligoclasas (An 14-15) que no muestran una variación significativa en el contenido en anortita. Las soluciones sólidas de los óxidos de Fe - Ti están constituidas sobre todo por rutilo en las zonas de la clorita y de la biotita, y por ilmenita en las zonas del granate y de la estaurolita; están desprovistos de hematites, y presentan unos contenidos en pirofánita netamente superiores a los de gelitlita.

Las composiciones medias de los núcleos de los granates de las metasedas de Rehanna Oriental (Alm 47.47 Sps 22.31 Ppr 6.34 Grs 24.06) y las de los bordes (Alm 51.05 Sps 19.88 Ppr 7.26 Grs 21.88), definen un gradiente de composición que revela una zonación de tipo progrado. Los anfiboles orientados en los planos de foliación S₁, son, de acuerdo con la clasificación de Leake (1978), Mg - hornblendas, hornblendas tschermakíticas y tschermakitas. Las plagioclásicas blásticas son de tres tipos: (a) labradoritas (An 53.55 - 61.90); (b) adesinas (An 37.63-48.49); (c) oligoclasas (An 26.65-29.51). Teniendo en cuenta que estas plagioclásicas no coexisten nunca a escala del mismo afloramiento, sus diferentes contenidos en Ca pueden reflejar una influencia de la composición química del protolito.

Termobarometría

Para cuantificar las condiciones P - T del pico térmico regional a ambos lados de la ZCOZ, se han seleccionado exclusivamente minerales pertenecientes a asociaciones en equilibrio textural. Las condiciones P - T del plegamiento P₁, serán igualmente cuantificadas en la Formación de Skihour. En las zonas del granate y de la estaurolita, la composición de los granates utilizados en termobarometría corresponde a la de los bordes, que se encuentran en contacto y en equilibrio textural con las otras fases de la matriz. Las tentativas de estimación de las condiciones P - T en la zona de la clorita de la Formación de Skihour, mediante la utilización conjunta de la termometría de exfoliación paragonita - moscovita (Eugster et al., 1972) y de la barómetros basada en el contenido en celadonita de las micas blancas potásicas (Massone y Schreyer, 1987), han proporcionado resultados poco consistentes para ser tenidos en cuenta. En la zona de la biotita, los únicos resultados significativos se han obtenido en la asociación sin - D₂ de la Formación de El Broumi - Ouled Hassine (Fig. 2). La termometría de exfoliación paragonita - moscovita (Eugster et al., 1972) ha permitido calcular la temperatura máxima, mientras que la presión ha sido estimada mediante el barómetro de Massone y Schreyer (1987); teniendo en cuenta la ausencia de feldespatos potásicos en la asociación de las metapelitas y semipelíticas de Rehanna, las presiones obtenidas con el barómetro anterior deben considerarse mínimas.

En la zona del granate, el cálculo de la temperatura ha sido realizado por medio de las reacciones de intercambio Fe - Mg entre.
Fig. 2.- Diagrama P - T mostrando los resultados termobarométricos obtenidos para las asociaciones metamórficas sin - D, de las zonas de la biotita, granate y estaurolita de las formaciones de El Broumi - Ouled Hassine y de Lalla Titafl. Las estimaciones P - T en la zona de la biotita han sido realizadas con termometría de evolución paragonita - moscovita (Engst et al., 1972) y con barometría basada en el contenido en celdas de las micas blancas potásicas (Massone y Schreyer, 1987). En las metasistasis, la temperatura ha sido calculada mediante el termómetro grt - hbl (Graham y Powell, 1984). El barómetro GRIPS ha sido aplicado en la zona del granate (1) y en la de estaurolita (2). El resto de las abreviaturas son como en la Fig. 1.

Fig. 2.- P - T diagram showing the thermobarometric results obtained in the syn - D, mineral assemblages of the biotite, garnet and staurolite zones of the El Broumi - Ouled Hassine and Lalla Titafl formations. P - T determinations in the biotite zone were obtained using the paragonite - moscovite solvus (Engst et al., 1972) and barometry based in the celadonite content of the white micas (Massone & Schreyer, 1987). In the metasistasis, the temperature was calculated with the grt - hbl thermometer of Graham & Powell (1984). The GRIPS barometer was used in the garnet zone (1) and in the staurolite zone (2). Other abbreviations as in Fig. 1.

La integración de las características metamórficas y estructurales del Macizo de Rehamna, permite proponer para el mismo una evolución tectonotermal caracterizada por el desarrollo de dos episodios consecutivos (Fig. 3): un episodio M, progrado, de afinidad barroviense, desarrollado en relación con el plegamiento P, y los cabalamientos tardí - D, a sin - D, y otro episodio posterior M, retrógrado, relacionado con la tectónica extensional sin - tardí - D, y con el plegamiento y los desgarres de la tercera fase de deformación.

El episodio M, corresponde a un engrosamiento cortical que se inicia con la fase de plegamiento P, cuyas condiciones P - T máximas estimadas en la zona de la estaurolita son de 520 °C y 8.3 Kb. Los estadios últimos del régimen tectónico compresivo culminan el engrosamiento cortical con el cabalamiento hacia el W a NW de la For-
Fig. 3.- Trayectorias P - T estimadas para las litologías de la zona de la estaurolita de la Formación de Skhour (I) y de las formaciones de El Brouni - Ouled Hassine y de Lalla Tittaf (II). En el caso de las formaciones de Rehanna Oriental (II), el recorrido sin - D₁ de la trayectoria ha sido supuesto.

Fig. 3.- P - T paths deduced for the lithologies of the staurolite zone in the Skhour Formation (I) and in the El Brouni - Ouled Hassine and Lalla Tittaf formations (II). In the formations of Eastern Rehanna (II), the syn - D₁ part of the path has been supposed.

<table>
<thead>
<tr>
<th>Formación de Skhour</th>
<th>Zonas Metamórficas</th>
<th>T (°C)</th>
<th>P (Kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₁</td>
<td>Granate</td>
<td>460 ± 30</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Estaurolita</td>
<td>520 ± 10</td>
<td>8,3</td>
</tr>
<tr>
<td>Estadios tardí-D₁ a sin D₂</td>
<td>Granate</td>
<td>495 ± 10</td>
<td>8 ± 0,5</td>
</tr>
<tr>
<td></td>
<td>Estaurolita</td>
<td>560 ± 10</td>
<td>8,7</td>
</tr>
<tr>
<td>Formaciones de El Brouni-Ouled Hassine y de Lalla Tittaf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estadios tardí-D₁ a sin D₂</td>
<td>Biotita</td>
<td>420 ± 10</td>
<td>4 ± 1</td>
</tr>
<tr>
<td></td>
<td>Granate</td>
<td>448 ± 10</td>
<td>5,5</td>
</tr>
<tr>
<td></td>
<td>Estaurolita</td>
<td>532 ± 30</td>
<td>7</td>
</tr>
</tbody>
</table>

Tabla 1.- Resultados termobarométricos obtenidos en la Formación de Skhour (Rehanna Central) y en las formaciones culminantes de El Brouni - Ouled Hassine y de Lalla Tittaf (Rehanna Oriental).

| Table 1. - Thermobarometric results obtained in the Skhour Formation (Central Rehanna) and in the uppermost formations of El Brouni - Ouled Hassine and Lalla Tittaf (Eastern Rehanna). |

...