Cabalgamientos plegados en el macizo hercínico de la Sierra de Herrera (Cordillera Ibérica)

Variscan folded thrusts in the Herrera Massif (Iberian Range)

A. M. Casas Sainz y A. L. Corés Gracia

Departamento de Geología, Facultad de Ciencias, Universidad de Zaragoza. Plaza San Francisco s/n, 50009 Zaragoza.

ABSTRACT

The Variscan structure of the Sierra de Herrera (northern border of the Iberian Chain) is defined by a main anticline, with an outcropping length of 10 kilometers. In its northern limb there are several imbricate thrust sheets, that predate the main fold. These structures show a NW-SE to N-S trend and a constant eastward vergence. The main consequence of the existence of these imbricate sheets is the thickening of the northern limb of the fold, with a 5:1 relationship with respect to the thickness of the primary stratigraphic series. These thrust sheets are probably associated to the main Variscan tectonic event giving rise to the Datos thrust. The whole of Variscan structures interferes with Alpine folding, that shows a main E-W direction in this area.

Key words: fold geometry, folded thrust, Variscan belt, Iberian Chain.

Geogaceta, 19 (1996), 3-6
ISSN: 0213683X 0213683X

Introducción

Los cabalgamientos plegados son estructuras relativamente frecuentes asociadas a cinturones orógenicos. Su geometría es debida a la asociación de una etapa de imbricación de láminas previa al desarrollo de los pliegues. La interpretación de este tipo de estructuras es difícil, y en ocasiones controvertida, cuando el frente de las láminas está aislado, debido a la erosión, y al mismo tiempo el sentido de buzamiento del flanco del pliegue coincide con la dirección de transporte del bloque superior del cabalgamiento (Pocovi et al. 1990a; Millán et al., 1995). En este sentido, algunos criterios importantes para diferenciarlos de otro tipo de estructuras (como fallas direcciones o retrocabalgamientos asociados al flanco del pliegue) son las relaciones de corte entre capas, las magnitudes de los buzamientos en los bloques superiores e inferiores de los cabalgamientos y las microestructuras en rocas de falla asociadas a las superficies de cabalgamiento.

En el presente trabajo se analiza el conjunto estructural de la Sierra de Herrera, un macizo paleozoico situado en el sector centro-norte de la Cordillera Ibérica, donde afloran materiales de edad comprendida entre el Cárnico y el Devónico. Su estructura ha sido interpretada previamente como debida a fallas direcciones tardihercínicas (Lendínez et al., 1989a,b), como consecuencia de retrocabalgamientos vergentes al oeste (Cardellach et al., 1988), y también como resultado de varias etapas de plegamiento (Alvaro, 1991). Nuestro objetivo principal es proponer un modelo estructural más sencillo para la deformación hercínica en este sector, que explique todo el conjunto de estructuras de acuerdo con una única etapa de acomiento en dirección E-W a ENE.

Situación geológica

La Sierra de Herrera se encuentra en la parte central de la Rama Aragonesa de la Cordillera Ibérica, 70 km al sur de Zaragoza y muy próxima al límite sur de la Cuenca del Ebro. Constituye un macizo de materiales paleozoicos levantado hasta alturas de casi 1500 m, y es drenado por el río Huerva. Está encuadrado al norte por los materiales mesozoicos que forman paleorrelieves aislados entre el relieve terciario de la Cuenca del Ebro, y al sur por los sedimentos del terciario continental de la cuenca de Calatayud-Montalbán (Fig. 1). Su estructura alpina, con el conjunto de la Rama Aragonesa, es la de un anticlinorio de orientación NW-SE, en cuyo núcleo afloran materiales paleozoicos, revestido en sus márgenes por la serie mesozoica plegada, con direcciones NW-SE a E-W.

La serie estratigráfica de la Sierra de Herrera se encuentra incluida en la Unidad de Herrera, que algunos autores (Carlís, 1983, Litán, 1983) incluyen en la Zona Cantábrica del macizo Hespérico, mientras que la Unidad de Badules, que comprende el resto de los afloramientos paleozoicos, se incluiría en la Zona Astur-occidental Leonesa. La serie comprende desde el Cámbrico superior al Devónico, y es fundamentalmente cuarcítica y pizarrosa, aunque también presenta algunos tramos calcaríos (Ordovícico superior y Devónico). El espesor acumulado de las distintas unidades es de unos 7000 m.

Estructura hercínica

La estructura de la Sierra de Herrera puede ser descrita como el flanco NE de un anticlinor de orientación aproximada NW-SE. Las unidades estratigráficas que aparecen presentan en casi la totalidad de los afloramientos polaridad NE y buzamientos comprendidos entre 40°NE y verticales o ligeramente invertidos. El flanco suroeste del anticlinor está constituido en el área estudiada por las
Fig. 1.- Esquema geológico de la Sierra de Herrera. Modificado de Cardellach et al. (1988) y Lendínez et al. (1989a,b).

Fig. 1.- Geological sketch of the Sierra de Herrera. After Cardellach et al. (1988) and Lendínez et al. (1989a,b).
formaciones cámbricas de la Unidad de Badules, que presentan buzamiento general hacia el SW. Este último se superpone al flanco NE a favor del cabalgamiento de Datos, cuyo movimiento hercínico está emmascarado por su actividad posterior como falla extensional (fracturación tardihercínica) y probablemente como desgarre diestro durante la compresión terciaria (Pocovi et al., 1990b, Vilchez, 1984, Alvaro, 1991). El cabalgamiento de Datos está considerado como un accidente de primer orden que acerca dos unidades con características estratigráficas y posición paleogeográfica diferentes (Unidad de Badules y Unidad de Herrera, Carls, 1983, Liñán, 1983).

El conjunto de la Sierra de Herrera presenta diferentes unidades superpuestas, que repiten prácticamente toda la serie Ordovícica-Silúrica hasta 5 veces en la zona de máxima superposición. En el sector norte de la sierra, las distintas unidades incluyen en la mayor parte de los casos a las formaciones de Valconchán, Borrañán, Deré, Santed, y Cuarcita Armoricana (Cámbrico superior-Arenigienso). Las formaciones Deré y Santed forman un paquete también superpuesto varias veces en este sector (Fig. 1). Hacia el sur las unidades cabalgantes afectan a términos más modernos de la serie, involucrando normalmente hasta el Silúrico inferior (Pizarras de Orea y Cuarcita Blanca). El resto de la serie Silúrica, compuesta en su mayor parte por pizarras (Fms. Bádenas y Luesma) no aparece afectada en su totalidad por los cabalgamientos, y presenta, en cambio, numerosos pliegues vergentes al E, en algunos casos con esquisostas de plano axial, y cabalgamientos menores. La serie Devónica aparece despegada por encima del Silúrico, y forma pliegues, de dirección N-S a NW-SE, con fuerte vergencia al E. El principal de ellos es el sincinal de Santa Cruz de Nogueras.

La disposición geométrica de las diferentes unidades de la Sierra de Herrera muestra varias particularidades que permiten su interpretación como un sistema de cabalgamientos imbricados pliegados posteriormente y formando parte del flanco oriental de un anticlinal con continuidad de varias decenas de km y de unos 5000 m de amplitud:

1) La mayor parte de las escamas presentan una serie estratigráfica que comienza con la Fm. Valconchán, formada en su mayor parte por pizarras. Hacia el sur los cabalgamientos van cortando unidades más modernas (Fig.1), lo cual puede interpretarse como consecuencia de la terminación lateral de los diferentes cabalgamientos.

2) La repetición de determinadas partes de la serie (fundamentalmente el conjunto Deré-Santed) en la parte norte de la Sierra es difícil de explicar mediante los modelos propuestos anteriormente (fallas direccionales o retrocabalgamientos), mientras que pueden interpretarse sencillamente como lentifugas de cabalgamiento ("horses") asociadas a estructuras en dúplex en estas formaciones. Esta estructura explica la existencia de algunas repeticiones con polaridad contraria (hacia el W) a la del resto del flanco del anticlinal.

3) Las pizarras del Silúrico (Fm. Bádenas), aunque en su parte superior están involucradas en las láminas cabalgantes (Fig. 2), aparecen como el nivel de despegue superior del conjunto de cabalgamientos. Por encima de ellas la serie Devónica aparece plegada pero no afectada por el sistema de cabalgamientos.

4) La traza cartográfica del cabalgamiento de Datos, de dirección general NW-SE, puede seguirse hacia el sur, donde su traza adopta orientación E-W. La existencia de varias klippes del Cámbrico superior sobre materiales del Silúrico en este área sugiere que la superficie del cabalgamiento debió de ser subhorizontal (al menos originalmente, ya que se encuentra retocada por los movimientos tardihercínico y alpino), y que llegó a colocar el Cámbrico de la Unidad de Badules sobre el flanco E del anticlinal de la Sierra de Herrera (situación recogida en la Fig. 2).

La interpretación que proponemos del conjunto de la estructura de la Sierra de Herrera es la de un anticlinal, posiblemente asociado a un "antiformal stack" infrayacente que se desarrolló posteriormente al sistema de cabalgamientos que aparece en su flanco N. El cabalgamiento de Datos constituía probablemente el último y más importante de estos cabalgamientos y su funcionamiento, de acuerdo con la geometría presentada (Fig. 2), tendría lugar contemporáneamente con la formación del anticlinal principal.

La deformación alpina

Las estructuras hercánicas aparecen cortadas por grietas de extensión, con orientación N-S a NW-SE y buzamientos subverticales o hacia el oeste, que llegan a alcanzar un gran desarrollo en el sector de Aladrén-Vistabella. Son juntas rellenas funda-mentalmente por cuarzo. Destacan también los filones de baritina (Pocovi et al., 1990), que presentan una dirección promedio cercana a E-W. Estos autores encontraron agrupaciones de filones en relevo, baritina como relleno de brechas o grietas sigmoideas, espejos de falla y estrías con escalones de precipitación de baritina, brechificaciones y maclados lamelares de origen tectónico, que demuestran que las deformaciones, al menos parcialmente, fueron simultáneas con el emplazamiento. El análisis estructural realizado sobre indicadores cinemáticos presentes en los filones permitió a estos autores atribuirlos a una fase de deformación caracterizada por una extensión uniaxial NNE-SSW, posiblemente relacionada con las primeras etapas distensivas del ciclo alpino de la Cordillera Ibérica.

A escala macroestructural, la estructura hercánica de la Sierra de Herrera ha sido retocada durante la compresión alpina y en su borde N aparece plegada con una dirección.
Fig. 3.- Patrones de afloramiento de cabalgamientos plegados observables en la Sierra de Herrera.

Fig. 3.- Different outcrop patterns of folded thrusts that can be seen in the Sierra de Herrera

aproximada ESE-WNW. El eje del antecín alpino se situaría entre Vistabella y Herrera de los Navarros. La superposición del plegamiento alpino sobre el flanco E del antecín hercínico da lugar a una estructura de apariencia domática en la que las capas del Paleozoico pasan de dirección ESE-WNW a NW-SE, N-S y NE-SW. Entre Vistabella y Cerveruela las capas presentan direcciones E-W correspondientes a la zona de charnela del nuevo pliegue. Sobre estas capas aparecen estrías de deslizamiento capa sobre capa que afectan a las juntas de extensión mesozoicas, lo que permite deducir que ha existido un plegamiento de la estructura hercínica por un mecanismo de flexo-deslizamiento durante la etapa alpina.

La proyección estructurística equisereal de todos los datos de dirección y buzamiento de las capas del paleozoico de la Sierra de Herrera (95 datos) permite determinar de forma aproximada la dirección del antecín alpino. La mayor parte de los datos se distribuyen sobre una ciclográfica cuyo polo es 120, 53 W. Anteriormente se ha comentado que los pliegues hercinicos presentaban dirección N-S, por lo tanto, el polo de la ciclográfica determinada representa la orientación del eje del pliegue alpino, que coincide con la orientación determinada para los datos del Muschelkalk (45 datos) deformado solidariamente con el zócalo paleozoico y los datos de la cobertura despegada sobre el Keuper.

La deformación alpina del zócalo hercinico se pone igualmente de manifiesto al SE de Paniza, en el extremo occidental del macizo mesozoico de Paniza-Herrera de los Navarros. En este sector, el Paleozoico y Muschelkalk aparecen invertidos y tumbados sobre el Keuper, formando parte del flanco W de un sinclinal tumbado de orientación próxima a N-S y vergencia hacia el E. La serie mesozoica suprayacente se dispone también invertida por encima del Keuper al E de Paniza. Los niveles conglomeráticos del Boceno-Oligoceno (Pérez, 1989), también aparecen plegados, encontrándose verticales o ligeramente invertidos.

Discusión y conclusiones

La estructura de la Sierra de Herrera ha sido interpretada anteriormente como debida a fallas direccionales y cabalgamientos de escasa entidad de vergencia SW. La primera de las hipótesis planteamos que puede descartarse ya que el propio patrón de afloramiento de las distintas unidades repetidas, sobre todo hacia la parte S del área estudiada, es difícil de encajar en un modelo de tectónica de desgarre. Por otro lado, según los datos existentes hasta el momento (Pocovi et al. 1996), los movimientos tardihercinicos serían más bien de tipo extensional. La existencia de retrocabaliamientos de alto ángulo, que cortarían en la zona de charnela a antecínicos asociados a los mismos, es acorde con el aspecto de la traza cartográfica de las distintas unidades (Fig. 1). Sin embargo las relaciones de corte de las capas en los bloques superior e inferior, y la existencia de repeticiones de segmentos menores de la serie puede ser explicada de forma más satisfactoria mediante el modelo de cabalgamientos plegados. El patrón de afloramiento de este tipo de estructuras se ajusta perfectamente a la cartografía y, mediante los distintos tipos de pliegues asociados al bloque superior de los cabalgamientos, permite ajustar prácticamente la totalidad de los buzemamientos medidos en el flanco E del antecín de Herrera (Fig. 3).

Agradecimientos

Los autores agradecen a A.Pocovi sus sugerencias y discusiones. El presente trabajo ha sido subvencionado por el proyecto DGICYT PB93-1218.

Referencias

Lendínez, A.; Ruiz, V. y Carls, P. (1989b). Mapa y memoria explicativa del Mapa Geológico de España 1:50.000, 466 (Mayuela)

