Aplicación de técnicas de Geo-Radar para el estudio del tapón de jet-grouting inyectado en los túneles del metro

Jet-grouting determination in a subway metropolitan tunnel by using ground penetrating radar analysis

F. García (**), J.A. Canas (*), J. Clapés (*), R. Osorio (*), L.G. Pujades (*), V. Pérez (*) y O. Caselles (*)

ABSTRACT

Several kilometers of tunnel have been excavated to extend a metropolitan underground system. In some places, where the subsurface is mainly composed by gravel and sands, water can easily penetrate causing problems to the tunnel and the stations.

In order to avoid such problems, a jet-grouting injection was carried out. To check the continuity of the jet-grouting a Ground Penetrating Radar analysis was applied.

The radar used is a SIR 10 of Geophysical Survey Systems Inc., with a center frequency antenna of 100 MHz, prepared for urban jobs.

A good determination of the variation of the thickness of the jet-grouting layer was obtained, although several difficulties, specially the irregular topography, were to be solved.

Three boreholes to determine the quality and thickness of the jet-grouting in three different places provided the right calibration of the involved radargrams.

During the processing of the data, several filters had to be applied to discriminate the radar signals from noise, coming mainly from the electrical system of the tunnel.

Key Words: georadar, ground penetrating radar, jet-grouting, metropolitan tunnel.

Geogaceta, 20 (6) (1996), 1365-1368
ISSN:0213683X

Introducción

Desde los años setenta, las técnicas de prospección geofísica más resolutivas son solicitadas por Ingeniería Civil, especialmente en grandes proyectos tales como túneles, puentes, presas, etc (Matthews y Tsui, 1993) y como métodos de control de calidad (Gary, 1992).

Entre estas técnicas de prospección, el georadar o radar del subsuelo es una de las más adecuadas tanto para determinar las estructuras del terreno como para la detección de gran variedad de patologías que pueden presentar las estructuras en Ingeniería Civil. Esto es debido a la gran capacidad de resolución del método en las profundidades habituales en las obras de ingeniería y su adaptabilidad a las diferentes problemas.

Una de las aplicaciones del georadar es el control de calidad de los tratamientos efectuados en el terreno que tienen por objeto acondicionarlo para determinadas obras civiles.

Este trabajo pretende evaluar mediante la utilización del georadar como método de control, la inyección de cemento («jet-grouting») realizada en el subsuelo de un tramo de túnel del ferrocarril metropolitano de Valencia. La técnica del «jet-grouting» aprovecha la existencia de un estrato de gruesos arenas y gravas para impermeabilizar mediante la inyección de cemento, el subsuelo del tramo del túnel situado por debajo del nivel freático.

El control del «jet-grouting» se realiza utilizando las mismas técnicas que en el estudio de estructuras de suelos, donde la capa de material inyectado se manifiesta como un reflector en el terreno. Los reflectores que se esperan observar definen claramente la existencia del «jet-grouting» pues se corresponden con el inicio y final de éste, definiendo el grueso de inyección o terreno tratado.

Durante este estudio se plantearon diversos problemas, que afectan al método de georadar: topografía accidentada de la superficie del suelo, imposibilidad de un deslizamiento regular de la antena en algunos tramos, existencia de zonas abarrotadas para el paso de la misma y presencia de instalaciones eléctricas que inducen parámetros en la señal de georadar.

El Ferrocarril Metropolitano de Valencia está construido, en mucho tramos, en un terreno arenoso (aluvial del rio Turia) con un nivel freático muy alto (entre siete y ocho metros de profundidad). Los materiales más superficiales, los dos primeros metros, son mullidos, seguidos de limos intercalados con diferentes capas de arcillas, arenas y gravas de distinta granulometría (figura 1).

La alta permeabilidad de las arenas y gravas del subsuelo de esta zona de la ciudad de Valencia puede ocasionar filtraciones de agua en obras subterráneas. Para evitarlas se efectuó el tratamiento de «jet-grouting».

La densidad de la malla de inyecciones realizadas en el terreno objeto de estudio y que forma...

Fig. 1.- Columna estratigráfica según el sondeo 217 efectuado en la zona de la estación.
Fig. 2.- Esquema donde se aprecia el método de inyección utilizado, la colocación del jet-grouting verticalmente, el muro de contención que separa la zona tratada de la no tratada y un esquema superficial de la distribución de puntos tratados.

Fig. 2.- Scheme of the jet-grouting method showing the vertical injection, the wall to isolate the ground treated with jet-grouting and the superficial distribution of the injections.

El jet-grouting es de una inyección cada 1.20 metros. Esta malla garantiza la impermeabilidad del subsuelo tratado. Para ello es importante que el cemento haya quedado distribuido homogéneamente, sin formación de ojeadas y con un grosor suficiente. El control de calidad se ha efectuado desde el interior de una estación de este ferrocarril en construcción y ha permitido conocer el resultado del tratamiento.

El proyecto constructivo preveía una capa de jet-grouting aproximadamente de cinco metros de espesor y su parte superior se situaba a una profundidad entre once y trece metros, determinando la estratificación. Estos valores están dentro del rango de profundidades en el que el geo-radar ofrece una buena resolución y permite el seguimiento de la capa a lo largo del túnel.

La existencia de tres columnas de sondeo efectuadas en la zona de la estación permiten conocer la estratigrafía. La comparación de los radargramas obtenidos durante el estudio con la estratigrafía aportada por los sondeos es importante para obtener una buena interpretación. Los resultados de la prospección mediante el uso de geo-radar nos permiten definir con precisión la existencia del tratamiento de jet-grouting.

Estratigrafía de la zona

En la interpretación de los datos obtenidos mediante el empleo del geo-radar es importante definir previamente las constantes dielectricas de los materiales del subsuelo a investigar (Ruperti et al., 1992; Mainjala, 1992). Estas constantes se pueden asignar a priori conocido los materiales de la columna estratigráfica. Esto permite asociar a cada formación un determinado rango de valores de su constante dielectrica. Si además conocemos la potencia exacta en un punto (sondeo), podemos determinar exactamente la constante dielectricas de cada formación.

En el presente estudio, las tres columnas de sondeo efectuadas previamente en la zona de la estación, han permitido fijar en los perfiles obtenidos con geo-radar las constantes dielectricas de los materiales de la zona para con ellas ajustar perfectamente los valores de profundidad y el potencial de cada estrato. Los sondeos alcanzan una profundidad de hasta cincuenta metros.

Se aprecia que la geología de la zona está compuesta por una primera capa de níllos de entre 2 y 3 metros de potencia, seguida de una de gravas con matriz limo-selillos de potencia entre 4 y 8.5 metros. Intercaladas entre estas dos primeras capas, aparecen, en dos de los sondeos, diversos estratos de un grosor total inferior a los dos metros. Por debajo de las gravas se encuentra una capa de arcillas limosas cuya potencia varía entre 10 y 17 metros. La cuarta capa importante presenta gravas de espesor entre 3 y 6 metros, existiendo arcillas por debajo de ellas. Como ejemplo de columna estratigráfica se presenta en
la figura 1 el sondeo número 217.

Puede resumirse que principalmente los materiales que componen el subsuelo donde se proyecta la construcción del ferrocarril metropolitano subterráneo son arenas, gravas, arcillas y limos. Las propias columnas de sondeo nos dan una profundidad aproximadamente de 7.5 metros para el nivel freático.

Técnicas de impermeabilización por «jet-grouting»

Las técnicas denominadas de «jet-grouting» son generalmente una inyección de suspensión, soluciones o emulsiones en los poros de un material del subsuelo para mejorar sus características geotécnicas. Al menos se utiliza para disminuir la permeabilidad de un determinado estrato o bien para aumentar la cohäsion del mismo. La técnica de «jet-grouting» es un método para crear una barrera impermeable o bien para preparar el subsuelo para soportar determinadas estructuras. Se utiliza en todo tipo de suelos, siendo necesario predosificar adecuadamente el tamaño del tratamiento. Es necesario efectuar un seguimiento del tratamiento y un control exhaustivo del mismo.

Básicamente, el tratamiento de «jet-grouting» consiste en introducir un conducto en el subsuelo hasta la profundidad adecuada, por donde se realizará la inyección de materiales. Por el conducto se aplica una inyección de agua a presión, que hace que parte del suelo de la zona afectada por la inyección salgan a la superficie. Simultáneamente se procede a la inyección de «groat», cemento o bien cemento con otros componentes, que se mezcla con las partículas del suelo que no han sido arrastrados por el agua. Esta inyección se realiza a menudo mediante aire a presión. La simultaneidad de los dos procesos (el vaciado con agua a presión y la inyección de los materiales de «groat») se aplica para que el suelo no pierda firmeza, como podría suceder si se realizara un hueco sin relleno (Bell, 1993). El tratamiento debe finalizar a una determinada profundidad, y se efectúa en una red de puntos, tal como se observa en la figura 2, para que el cubrimiento de la superficie sea completo. El material inyectado en cada uno de los puntos deberá superponerse con el inyectado en los adyacentes. El material inyectado debe ser de baja viscosidad para que el tratamiento se efectúe adecuadamente y pueda inyectarse en la proporción adecuada. Para compactarlo debe añadirse arena. Los demás componentes de la mezcla dependen del problema y del tipo de suelo a tratar.

En la estación de metro estudiada, esta técnica fue aplicada para disminuir la permeabilidad del terreno, para lo cual se inyectó una solución de cemento en una capa de arenas, justo por encima del nivel de extensión, y se mezcló con la mezcla de cemento de baja viscosidad, contribuirán a compactarse, formando de este modo una pantalla de un cierto grosor a una profundidad que permitió impermeabilizar el suelo.

Las inyecciones de «groat» se realizaron formando una malla de puntos separados entre sí de 1.20 metros aproximadamente, cubriendo cada una de las inyecciones una superficie aproximadamente circular de 1.50 metros de diámetro. Cada una de las columnas de «jet-grouting» se formaron por rotación, como se aprecia en la figura 3. Para delimitar la zona a impermeabilizar, se colocó una pantalla de hormigón que en los registros del geo-radar (figuras 4 y 5) se aprecia como una discontinuidad de la señal vertical a partir de la cual queda de existir la señal debida a «jet-grouting».

El control de calidad del tratamiento comenzado se efectúa con geo-radar. En los registros obtenidos puede determinarse el grosor del mismo y su continuidad. Este método de control tiene como ventaja frente a los sondeos mecánicos que ofrece datos de forma continua en cada uno de los perfiles efectuados.

Equipo de geo-radar utilizado y planteamiento de las medidas

Para el presente estudio se utilizó un geo-radar digital SIR 10 de GSSI con una antena apariada de frecuencia central 100 MHz. Este tipo de antena es usual para prospección geofísica en zonas urbanas ya que evita en gran medida el ruido que puedan introducir otros reflectores situados por encima de la antena: farolas, redes eléctricas, etc. En concreto, en el caso del túnel estudiado se ha utilizado con el propósito de minimizar el reflejador que supone la bóveda del túnel. Además, esta antena muestra con suficiente detalle y resolución el rango comprendido entre 7 y 20 metros, profundidad donde se localiza el tratamiento de «jet-grouting».

Uno de los principales problemas que se plantearon en este estudio era la presencia en algunos tramos de una parrilla metálica de las solas de hormigón sobre las que se pasaba la antena. La potencia de este modelo permite que la energía del pulso que atraviesa la parrilla sea suficiente para que las reflexiones en profundidad sean detectadas. Para la visualización el equipo SIR 10 tiene la posibilidad de ajustar las ganancias en función del tiempo, permitiendo minimizar el potente reflejador inicial.

Los perfiles realizados en la estación, han sido planificados para obtener registros de geo-radar continúos en distancia (200 adquisiciones por metro) y profundidad (tiempo de muerte 500 ns). Se ha podido realizar la exploración en 145 metros de una longitud total de la estación de 184 metros, quedando el resto de su extensión sin analizar al no ser accesibles debido a obstáculos diversos. Se realizaron tres perfiles longitudinales en la zona de la estación.

Para el análisis en laboratorio de los datos obtenidos en la estación se ha empleado el software RADAN III de GSSI. Este programa permite el tratamiento de las señales mediante diversos filtros (p.e. filtros IIR) para resaltar los reflejadores de interés y minimizar otros.
Tratamiento de los datos en laboratorio

En todo trabajo de prospección por geo-radar, una importante fase es el detallado análisis y tratamiento de los datos previamente obtenidos en el campo. Esta labor depende totalmente de la problemática en cuestión. En nuestro caso, la perdida o irregularidad del suelo impide en algunas ocasiones un deslizamiento suave de la antena por la superficie del túnel. Esto provoca oscilaciones en la señal registrada que en laboratorio se han eliminado utilizando filtros paso banda horizontales de respuesta infinita (filtro de 5 puntos).

Otra dificultad presente en este estudio ha sido la presencia de un importante red de instalaciones eléctricas. A pesar de que la antena utilizada está diseñada para trabajar en áreas urbanas con un apantallamiento superior, no ha podido evitar totalmente los problemas o inducidos en la señal por las instalaciones eléctricas. Para mejorar la relación señal-suelo, se ha realizado un filtrado paso banda vertical centralizado en la frecuencia de la señal portadora.

Algunos perfiles se han efectuado sobre una superficie en la que existen numerosos objetos metálicos, como por ejemplo las parrillas de las losas de hormigón sobre las que se ha pasado la antena. Estas armaduras proximales a la superficie provocan reflexiones múltiples del pulso emitido que oscurren y dificultan la determinación de las reflexiones de otros reflejos profundos. En estos perfiles se ha realizado una desconvolución, que permite eliminar las reflexiones múltiples de objetos metálicos situados en superficie o a poca profundidad. En algunos perfiles se ha observado especialmente importante este tratamiento ya que las reflexiones ocultan las producidas por el inicio y final de la capa de "jet-grouting".

Se ha efectuado también sobre todos los registros una migración para eliminar el efecto de las reflexiones en objetos que no están situados en la vertical de la antena y de las superficies que no son planas, que generan señales de pendientes alteradas (Dobrin, 1976).

La presencia de desviaciones importantes en el túnel dificulta el cálculo de la cota de la capa de "jet-grouting" ya que se registran tiempos de reflexiones diferentes en los puntos situados en el mismo nivel respecto a la superficie del suelo. Para su tratamiento e interpretación, se ha aplicado a todos los perfiles una corrección topográfica cuyo objeto es tener un nivel cero común en toda la longitud de cada uno. Esta corrección ha permitido igualar los tiempos de reflexión de la señal del geo-radar en las capas existentes a igual profundidad, facilitando de este modo la situación correcta de la capa.

Perfiles y resultados obtenidos

Se han efectuado trece perfiles agrupados en seis zonas. En este apartado se presentan los resultados obtenidos tras los análisis en cada una de ellas, incluyendo la corrección topográfica que nos permite referenciar todas las profundidades a una misma cota relativa.

En la primera zona se realizaron dos perfiles, de treinta metros de longitud total. La primera reflexión asociada al inicio de la capa de "jet-grouting" está a una profundidad entre 12.5 metros y 15.2 metros. La segunda reflexión tiene lugar entre los 16.5 metros y los 17.4 metros de profundidad. El grosor medio del "jet-grouting" en esta zona es de cuatro metros aproximadamente.

La longitud de la segunda zona, formado por tres perfiles, es de ochenta metros. La reflexión inicial en el "jet-grouting" se produce a una profundidad entre 11.7 metros y 12.8 metros, mientras que la reflexión de la base está entre los 15.5 y 16.9 metros. El grosor medio del "jet-grouting" es también de cuatro metros aproximadamente.

Una tercera zona compuesta por tres perfiles, también de ochenta metros de longitud presenta el contacto superior del cemento inyectado con el medio a una profundidad entre los 11.8 metros y los 12.1 metros. El contacto inferior se sitúa entre los 16.9 metros y los 17.8 metros. En este caso, la potencia media de la capa de "jet-grouting" es aproximadamente de cinco metros.

En la cuarta zona, de cuarenta metros de longitud y que consta de un único perfil, una primera reflexión indica que la superficie superior del "jet-grouting" se encuentra entre los 11.4 y los 12.3 metros de profundidad, quedando la parte inferior situada entre los 15.8 metros y los 17.4 metros. El grosor medio obtenido es ligeramente mayor que cinco metros.

En la quinta zona, también compuesta de un solo perfil y de cuarenta y cinco metros de longitud, la primera reflexión está situada entre 11.8 y 13 metros de profundidad, estando la reflexión en la base entre 16.8 metros y 17.5 metros. El espesor del tratamiento de "jet-grouting" se reprueba en este caso de aproximadamente cinco metros.

La sexta y última zona consta de tres perfiles de una longitud total de catorce metros. Presentando la reflexión en la parte superior del "jet-grouting" a una profundidad entre 12.3 y 12.4 metros, y la parte inferior entre 16.6 y 17.1 metros. La potencia de la capa en este sector es algo mayor que cuatro metros (figura 6).

Como ejemplo de los registros obtenidos se presenta en la figura 5 un perfil situado en una zona donde puede verse la continuidad del tratamiento de "jet-grouting". En la figura 5 se puede ver un detalle de un registro donde es posible observar la forma de una de las columnas de "jet-grouting". En la figura 5 se explica el proceso de este tratamiento. En ella se ve que el "jet-grouting" se inyecta en forma de columnas. El corte final de todos los registros efectuados se resume en la figura 6, la escena de toda la longitud de la estación donde se presenta la profundidad a la que se encuentra el estrato de material inyectado, que se sitúa entre las cotas -12 y -17 metros. En cada tramo se especifican los perfiles que se realizaron.

Conclusiones

En los registros puede apreciarse claramente la existencia de dos importantes reflectores que se corresponden con el inicio y el final del tratamiento de "jet-grouting". Así mismo, se aprecia la continuidad del estrato inyectado tanto en profundidad como en longitud, quedando situado su inicio a unos doce metros de profundidad desde el nivel topográfico cota cero, y el final del tratamiento a unos 17 metros de profundidad referidos al mismo nivel.

En la figura 6 se presenta un esquema con la topografía de la superficie de la estación por donde se desliza la antena y el inicio y final del tratamiento de "jet-grouting" determinados del análisis.

Se demuestra en este trabajo que ha sido posible realizar un análisis detallado del tratamiento efectuado en el subsuelo, mediante el proceso posterior de la señal.

Un adecuado tratamiento en laboratorio, teniendo en cuenta la problemática concreta de cada estudio, y las circunstancias del terreno, posibilita la correcta interpretación de los datos obtenidos. Correcciones por topografía del suelo sobre el que se aplica la antena y filtrados adecuados para evitar el aparecimiento ocasionado por reflexiones múltiples o por superposición de otras señales eléctricas, a menudo presentes en las zonas de estudio, son muy importantes para la correcta interpretación de la señal registrada.

La posibilidad de determinar la correcta aplicación del "jet-grouting" en las construcciones civiles asegura el buen funcionamiento de las mismas, evitando problemas que pueden ocasionar importantes pérdidas económicas y materiales. En este caso se utiliza el geo-radar como un método sencillo y eficaz para la prevención de posibles fallas en la aplicación tratamiento de "jet-grouting" bajo la red de ferrocarriles metropolitanos de Valencia.

La existencia de sondas realizadas en la zona de estudio y el conocimiento geológico de la misma facilita la interpretación de los datos.

Referencias

Weil, G.J. (1992) 4th Int. Conf. on GPR. Romania. Geol. Surv. of Finland. Special Paper, 16, p.259-266