Estructura de la Cadena Prelitoral Catalana entre el Llobregat y el Montseny

Structure of the Catalan Pre-litoral Range between the Llobregat and the Montseny

Servei Geològic de Catalunya-ICC. Parc de Montjuïc. 08038 Barcelona

ABSTRACT

It has been largely demonstrated that basement thrust-slices were emplaced over the southeastern margin of the Ebro basin during Eocene times (Fontboté, 1954) due to sinistral, convergent wrenching in a north-south regional shortening context (Julià y Santanach, 1984; Guimerà, 1984), and that the deformation migrated from the northern to the southern areas through the active margin (Anadón et al., 1985). Three groups of compressional structures deform the basin margin in the area between Vacarisses Slice and Montserrat. Subsequently to emplacement, continental syntectonic, sediments were deposited in the adjacent areas of the basin, which together with the unconformities bounding their depositional sequences, recorded the evolution of the deformation along the time. Thus, in a first step, a pile of northverging thrust slices, involving the basement and the Triassic-Paleocene cover, were emplaced in a piggyback sequence; in a second step, the northwards progression of the system was partially blocked, and the previous structures were deformed by backthrusts involving Triassic and the deposited Eocene cover; and in a third step, as the system was completely blocked, formed a basement-involving fold, which southern limb evolved to a basement-invoking thrust, and emplaced, in an overstep sequence, Paleozoic slices over the previously deformed basin margin. The emplacement of such basement slices at different heights in the sedimentary record, together with the trace in map view of the segments forming the Valles fault, suggest a positive flower geometry for the main original wrench fault. We relate these three steps to the migration of the deformation proposed by the aforementioned authors. During the Neogene, the most internal structures with suitable dips were inverted. As a consequence, the segments forming the old strike-slip fault were transformed in overstepping normal-fault segments, linked by relay ramps. Seismic and field data show that some of these ramps corresponds to the “Llobregat fault”.

Key words: Thrust, basement-involving fault, syntectonic sediments, inversion, extensional faulting.

Geocazeta, 20 (4) (1996), 796-799
ISSN: 0213683X

Introducción

Las publicaciones más recientes sobre la estructura de las Cadenas Costeras Catalanas entre la Sierra de las Pedrícies y la zona de enlace con la Cadena Ibérica (Julià y Santanach, 1984; Guimerà, 1984; Anadón et al., 1985), demuestran que el emplazamiento de láminas cabalgantes de materiales del zócalo paleozoico sobre el margen meridional de la cuenca del Ebro, se produjo durante el Paleógeno en un contexto tectónico de transpresión o convergente wrenching sinistral.

La realización del Mapa Geológico de Cataluña a Escala 1/25.000 comporta la cartografía geológica a escala 1/10.000 de las zonas con más actividad humana alrededor de Barcelona. Su desarrollo ha permitido el estudio detallado de un zona de la Sierra Prelitoral comprendida entre el Llobregat y la sierra de las Pedrícies (área recuadrada en la Fig. 1). Los resultados obtenidos facilitan una interpretación que se encuadra en un modelo geológico del sector septentrional de las Cadenas Costeras Catalanas.

La zona de Vacarisses

La estructura general de la zona (Fig. 1), descrita por Fontboté (1954), consiste en un sinclinal de dirección NE-SO vergente hacia el NO, formado por materiales paleozoicos y sedimentos de una cobertura que incluye el Triásico, parcialmente erosionado bajo los sedimentos continentales paleocenos (Fm. Mèdiana), y oceanos; (Anadón et al., 1985). El flanco sur está invertido y es cabalgado por los materiales paleozoicos que forman la sierra de las Pedrícies. El límite meridional de este conjunto de estructuras es la actual falla del Valles.

En detalle (Fig. 2 y 3), el flanco SE del sinclinal en la zona de Vacarisses está formado por un apilamiento complejo de láminas cabalgantes menores de las cuales, las inferiores involucran base y parte de la cobertura tríásica y tienen vergencia hacia el NO y las superiores, vergentes hacia el SE, sólo involucran cobertura; con respecto a las anteriores, las fallas que las limitan son retrocabalgamientos. Ambos grupos de estructuras producen duplicaciones de niveles completos del Triás. Todo el conjunto está plegado y cabalgado por los materiales paleozoicos mencionados, los cuales están, a su vez, estructurados en, al menos, dos láminas cabalgantes de orden menor.

El núcleo del sinclinal está formado por sedimentos continentales paleocenos (Anadón et al., 1985), dispuestos en tres grupos de capas grano y estrato-decrecientes, que se pueden seguir a lo largo de todo el margen, limitados por discordancias a escala de la cartografía (Fig. 2). El grupo más antiguo está constituido por las brechas del Cairat, el segundo conjunto está formado por las arenis-
cas de la Salut y los conglomerados de Sant Salvador de les Espases, y el conjunto más moderno son los conglomerados del Pla de les Bruixes o nivel más bajo del abanico de Montserrat. Los dos últimos grupos están separados por una brecha (brechas de la Torre), de geometría lenticular y unos 400 metros de potencia máxima, sin estructura interna; la cantidad de matriz arcillosa aumenta en detrimento del tamaño y cantidad de los cantos al alejarse de los límites de las línneas cabalgantes de paleozoico, y el conjunto acaba acuñándose por completo. Asimismo se observa que estas brechas están estructuralmente por debajo de los materiales paleozoicos, y que el contacto entre ellos es un cabalgamiento subhorizontal. Intercalado en la serie de conglomerados de Sant Llorenç del Munt, aflora otro nivel de brechas similares, cuya área fuente son también los materiales paleozoicos de la sierra de les Pedreres.

Evolución tectono-estratigráfica

Las estructuras descritas y su disposición geométrica, se interpretan como el resultado de tres estados de deformación sucesivos, en contextos tectónicos distintos, que se sucedieron en el tiempo durante el Eoceno.

En un primer estado, durante el Eoceno inferior, en un régimen compresivo, se generó un apilamiento de láminas cabalgantes que involucraron materiales del zócalo paleozoico y la cobertura triásica y paleozoica, vertigem hacia el NO, que se emplazaron en una secuencia de bloques inferior. Este evento quedó registrado por las brechas del Cairat y la discordancia que las limita por su base (Anadón et al., 1995). En un segundo estado, probablemente debido a la todavía reducida potencia de la cobertura, la progresión del sistema hacia cuenca quedó bloqueada, generándose cabalgamientos dirigidos hacia el SE (retrocalabamientos) que involucraron materiales de la cobertura, duplicando las series del Triás; este evento fue registrado por los conglomerados de Sant Salvador de les Espases, discordantes sobre los sedimentos finos de la Formación de la Salut; este estado probablemente tuvo lugar en un régimen de transposición. En un tercer estado, probablemente muy cerca en el tiempo, el sistema quedó completamente bloqueado, la deformación continuó y se formó un pliegue que involucró al basamento, a las estructuras generadas anteriormente y a la cobertura depositada hasta entonces; el pliegue evolucionó a una falla inversa y se generaron los cabalgamientos que emplazaron, en una secuencia de bloque superior, los materiales paleozoicos sobre los sedimentos anteriores; dicho emplazamiento, que tuvo lugar en un ambiente subafremen, debió ser extremadamente rápido al principio, como parece ser sugerido por la ausencia de estructuras internas sedimentarias en las brechas de la Torre, depositadas como respuesta inmediata al mismo. En contraste, los conglomerados de Montserrat y Sant Llorenç del Munt (Eoceno medio hasta Oligoceno) denotan una comparativamente mucho mejor estructuración de la red de drenaje.

Estructura general de la zona entre el Llobregat y el Montseny.

La zona de Matadepera-Castellar del Vallés, descrita recientemente por López-Blanco (1994), tiene una estructura similar a la de la zona de Vacarisses, si bien este autor interpreta que todos los cabalgamientos tienen vergencia hacia el NO. El límite oriental de esta zona es un cabalgamiento vergente hacia el NO, que superpone rocas graníticas sobre el margen meridional del sinfínse (cabalgamiento de Bigues). Entre este cabalgamiento y el Montseny, existe una zona (área del río Congost) en la cual los materiales paleozoicos y su cobertura triásica se pueden considerar autóctonos relativos. El límite entre esta zona y el conjunto del Montseny, que incluye en su parte frontal el área deformada del Brull, es una falla o un conjunto de fallas orientadas NO-SE las cuales, con respecto a los sedimentos de la cobertura triásico-paleogena, son de salto en dirección sinistras y tienen un desplazamiento calculado en planta del orden de 4 km. La cartografía 1/25.000 de la zona de Amer-Quílleres (SGC, en prensa) ha confirmado que el límite oriental del conjunto Montseny-Quílleres es otra falla o conjunto de fallas que, si bien durante la extensión neógena actuaron como fallas normales, con respecto a los sedimentos de la cobertura paleogena, son de salto en dirección dextrás.

Los sedimentos continentales eocenos adosados al flanco septentrional del conjunto Montseny-Quílleres (formaciones Vilanova de Sau; Iberiense Superior y Romagats; Iberiense terminal-Cuviscente-Luteciense medio; Colombo, 1980) son suavemente hacia el NO, y se están involucrados en deformaciones de la complejidad de las descritas en otros sectores.

Esto sugiere que el conjunto Montseny-Quílleres pudo emplazarse, de SE a NO, durante el Iberiense Inferior? como un *indecir* deformando los materiales triásicos y posiblemente los paleozoicos de la cobertura de su bloque inferior, como se aprecia en el sector occidental de la estructura (zona de El Brull). La erosión de la mayor parte de las estructuras generadas en las zonas frontales habrá quedado registrada por los materiales de la Fm. Vilanova de Sau, a su vez erosionados por parte de los conglomerados de Romagats. Tal vez algunos remanentes de dichas estructuras estarían recubiertos en discordan-
Las fallas del Vallés y del Llobregat

cia por los sedimentos que forman la zona sur-oriental de la plana de Vic.

La actual elevación sobre el nivel del mar de los materiales que forman el margen oriental de la cuenca del Ebro ha sido atribuida, al menos en parte, al levantamiento de los flancos de la cuenca Catalano-Balser asociado a la extensión neógena (Watts y Torné, 1992; Jensen et al., 1995).

Las fallas del Vallés y del Llobregat

Cartográfica la actual falla del Vallés está formada por segmentos de dirección NE-SO, desplazados los unos respecto de los otros de manera escalonada en una dirección perpendicular a ellos (Fig. 1). Esta geometría fue atribuida a la existencia de importantes fallas de desgarre de dirección NO-SE, la mayoría dextrás, que involucraban al zócalo y que habían sido activas desde el Mesozoico, estructurando los Catalánides en un conjunto de dominios paleogeográficos (Anadón et al., 1979). Sin embargo, los perfiles de sísmica de reflexión disponibles en el área de la “falla del Llobregat” (Bartrina et al., 1992); ver situa-

ción en Fig. 1) no indican ninguna falla importante de dirección NO-SE, sino una inflexión del zócalo y de las capas del Mioceno, que buzana hacia el SO (Fig. 4). Las cartografías 1/10.000 de la zona SOG, inédito y 1/25.000 (SGC, en prensa), demuestran una distribución de buzamientos coherentes con dicha geometría, y también la existencia de una falla de carácter local, de dirección NO-SE que, con un desplazamiento vertical de unos 200 metros (no visible en el perfil disponible), hunde relativamente el bloque SO e involucra materiales miocenicos. En esta zona se desarrollaron, durante el Cuaternario antiguo, un sistema aluvial cuyos elementos tienen un sentido de progradación hacia el SE, y facetas triangulares en la vertiente SO de la montaña de Montserrat.

La disposición geométrica descrita debe interpretarse como una rampa de relevo que buzara hacia el SO, por la cual se transfiere la deformación entre los segmentos Matadepera-Olesa de Montserrat y Collbató-Valibona d’Anoia. La zona más alta de la rampa está rota por una falla menor de dirección NO-SE que conecta ambos segmentos. Los rasgos morfológicos mencionados sugieren que esta falla es relativamente reciente, tal vez posterior al Mioceno.

Conclusiones

La evolución de la deformación en el sector comprendido entre el Llobregat y las Guilleries se enmarca dentro del modelo general propuesto por Anadón et al. (1979), Julià y Santanach (1984), Guimerà (1984) y Anadón et al. (1985).

A principios del Eoceno Inferior se generaron en el borde meridional de la cuenca del Ebro calabamientos vergentes hacia el noroeste que, involucrando materiales del basamento paleozoico y de la cobertura triásico-paleocena, evolucionaron en una secuencia de bloque inferior. En este contexto pudo emplazarse el actual conjunto Montseny-Guilleries. Posteriormente, en un contexto tectónico de transgresión sinistro, se deformaron las estructuras precedentes, la progresión de las estructuras en dirección a la cuenca quedó bloqueada y en la zona de Vacarisces se generaron inmediatamente retrocalabamientos (out of the syncline) activos que involucraron sólo cobertura.

El emplazamiento de los dos grupos de estructuras fue registrado por la deposición de sedimentos clásticos continentales organizados ciclicamente; la base de cada uno de los ciclos está limitada por una discordancia o una disconformidad visibles en las áreas proximales, que pasan a paraconformidades en las distales.

Seguidamente, la progresión de las estructuras anteriores quedó bloqueada por completo y, dentro del mismo contexto transpersivo, se generaron calabamientos y fallas inversas de alto ángulo vergentes hacia el noroeste, que emplazaron materiales del zócalo paleozoico sobre los precedentes, en una secuencia de bloque superior. Esto quedó registrado por cuerpos de brechas de geometría lenticular, intercalados en la serie sedimentaria sintectónica a diferentes alturas, que se acuñan lateralmente y son sustituidos por paraconformidades.

El emplazamiento de láminas de zócalo a diversas alturas de la serie estratigráfica sintectónica es coherente con una geometría en flor positiva de la falla original de salto en dirección.

Finalmente, en el contexto tectónico de extensión que afectó al Mediterráneo occidental durante el Neógeno, las estructuras con un buzamiento adecuado fueron invertidas, generándose la actual fosa del Vallés (Fontboté, 1954). Probablemente, la traza cartográfica de la falla de salto en dirección
principal no sufrió variaciones importantes durante la inversión (Anadón et al., 1995), conservándose la disposición en segmentos escalonados de la estructura en flor original. La deformación producida por las estructuras neógenas se transfiere, entre los distintos segmentos que forman la actual falla del Vallés, a través de rampas de relevo (Peacock y Sanderson, 1994). La sísmica de reflexión disponible, los datos de campo y la cartografía 1/10.000, demuestran que la actual “falla del Llobregat” es la expresión de una de dichas rampas de relevo, y que la falla de carácter local observada de dirección NO-SE que conecta los segmentos Mata depera-Olesa de Montserrat y Collbató-Vallbona d’Anaia, puede haber sido activa hasta después del Mioceno.

Agradecimientos

A Cai Puigdefábregas, a Montse Torné y a Lluís Cabrera por los comentarios y sugerencias a la primera redacción del manuscrito.

Referencias

Colombo, F. (1980): Tesis Univ. Barcelo-

na, 609 p.

SGC (a, en prensa): Hojas 295-1-1 y 295-1-2, M.G.C. 1/25.000.

SGC (b, en prensa): Hoja 392-1-2, M.G.C. 1/25.000.

SGC (inédito): Hojas 392-1-3 y 392-2-3, M.G. 1/10.000.

Fig. 3.- Corte geológico (ver situación en Fig. 2). Clave: 1, Cuaternario; 2, Neógeno; 3, Brechas de la Torre; 4, Conglomerados de St. Salvador de les Espases; 5, Formación de la Salut; 6, Brechas del Cailrat; 7, Formación de Mediona; 8, 9 y 10, Muschelkalk; 11 y 12, Buntsandstein; 13, Paleozoico.

Fig. 4.- Perfil sísmico perpendicular a la “falla del Llobregat” (ver situación en Fig. 1). Clave: 1, Neógeno; 2, Basamento.