Primeros datos acerca de la evolución química de los Filosilicatos en el complejo Malaguide durante la fase Metámórfica Alpina

Chemical trends of alpine-related phyllosilicates from the Malaguide Complex. First data

M. D. Ruiz Cruz

Departamento de Química Inorgánica, Cristalografía y Mineralogía. Facultad de Ciencias, 29071, Málaga

ABSTRACT

Compositional trends in the Malaguide Paleozoico, a very low-grade metamorphic complex of the Betic Cordiller, have been investigated in the Málaga area using bulk-rock mineralogy, clay mineralogy and chemical composition of phyllosilicates. Chemical trends, characterized by the general decrease on Si and Al contents, and the simultaneous increase on Fe+Mg content and Fe/(Fe+Mg) ratio. This can be interpreted in terms of both, increasing temperatures, and differences in initial bulk chemistry. It is concluded that: (a) Most of the phyllosilicate reactions during the alpine event took place in a close system, with scarce exchanges between coarse- and fine-grained beds. (b) The general trends lead to a transition from dioctahedral species toward trioctahedral ones, as a function of increasing depths.

Key words: Alpine metamorphism, Betic Cordiller, Compositional trend, Phyllosilicates, Very low-grade metamorphism.

Introducción

El Complejo Malaguide constituye la unidad estructural superior dentro de las zonas internas de la Cordillera Bética (Fig. 1). A diferencia de los complejos inferiores (Alpujárride y Nevado-Filabride), en los que se han identificado y caracterizados diferentes fases metamórficas (Díaz de Federico, et al., 1990), el Complejo Malaguide aparece afectado por un metamorfismo de muy bajo grado que ha sido escasamente investigado hasta el momento.

Clásicamente este Complejo se subdivide en tres unidades (Mikel, 1985): La unidad paleozoica, la unidad permo-triálica y la unidad mesozoico-terciaria, con desigual desarrollo a lo largo de la cordillera. En este trabajo solo se hace referencia a la parte inferior de la unidad permo-triálica y a la unidad paleozoica, cuyos diferentes miembros se han esquematizado en la columna de la Figura 2.

El conjunto de los materiales malaguidés se ha visto sucesivamente afectado por los episodios tectónicos hercínico y alpino, aunque los efectos del primero han sido ampliamente debatidos por los geólogos que han estudiado esta zona, ya que aparecen en gran medida enmascarados por las deformaciones alpinas. Felder (1978) señala la existencia de una fase metamórfica hercínica que habría afectado localmente a los materiales paleozoicos. Ruiz Cruz & Andreo (1996) identifican ambas fases metamórficas, la primera en materiales paleozoicos, la segunda en materiales paleozoicos y permo-triálicos. Las condiciones físicas en ambos procesos debieron ser diferentes y una serie de fases minerales desarrolladas durante el episodio hercínico se ha mantenido tras el episodio alpino.

Materiales y métodos

La secuencia malaguide ha sido muestreada en varios afloramientos próximos a Málaga donde, a partir del estudio de 200 muestras, se ha realizado una selección (Fig. 2), que ilustra los cambios químicos y mineralógicos.

Los resultados recogidos en el siguiente apartado se basan en:

(1) Examen al microscopio de polarización y realización de análisis modales.
(2) Examen mediante microscopía electrónica de barrido (microscopio Jeol-JSM 840).
(3) Estudio mediante difracción de rayos X de muestras totales y las fracciones de tamaño <2µm y 2-20µm (difractómetro Siemens D-5000, radiación CuKα y monocromador de grafito).

(4) Determinaciones químicas mediante: (a) microsonda electrónica (Cameca SX-50) y (b) análisis al microscopio electrónico de transmisión (microscopio Philips CM-200, equipado con unidad de microanalisis EDAX).

Resultados

La evolución mineralógica de las muestras totales viene caracterizada por:

(1) Evolución en el contenido y composición de los feldespatos (Fig. 2), (2) Descenso gradual del contenido en filosilicatos a 7 Å a partir del límite Permotrias-Carbonífero (3) Desarrollo considerable de clorita en los miembros del Paleozoico superior y medio. El estudio textural pone de manifiesto que, en el Permotrias la mayor parte de micas y cloritas son detríticas, aunque en los trasmos inferiores, sericita y clorita autógenica han crecido, especialmente a partir de dickita (Ruiz Cruz & Andreo, 1996). En las areniscas del Carbonífero y Devónico se han podido identificar varias generaciones de micas y cloritas, desarrolladas en diferentes fases metamórficas. En este
trabajo recogemos únicamente los datos químicos relativos a aquellos minerales que aparecen claramente relacionados con el episodio alpino. A partir del Silúrico, no obstante, la textura es mucho más homogénea y solo el desarrollo de minerales en venas y, ocasionalmente, la presencia de varios planos de esquistosidad, permiten identificar diversas generaciones de micas y cloritas.

En las fracciones finas, las variaciones más significativas (Fig. 2) incluyen: (1) Las transiciones caulinita —> dickita y dickita —> nacrita, desarrolladas, respectivamente, en el Permotrías inferior y el Carbonífero. (2) Descenso considerable en el contenido en estos minerales, aumento simultáneo en el contenido en clorita y evolución en la composición de las cloritas, reflejada en la relación de intensidades basales en los diagramas de DRX. (3) Evolución en la cristalinidad de la ilita, y (4) Presencia esporádica, a lo largo de la secuencia paleozoica de una serie de minerales interesratificados regulares con clorita, y evolución de los mismos en el sentido tosudita —> interstratificados mica/clorita —> corrensitita de alta carga (Ruiz Cruz, 1995).

La evolución mineralógica viene acompañada por una evolución química dentro de cada grupo de minerales, que aparece esquematizada en la Figura 2. Las micas desarrolladas durante el episodio alpino ofrecen contenidos medios homogéneos en SiIV a lo largo de la secuencia (alrededor de 3.2 a.p.f.), aunque se observa un ligero descenso en las muestras más profundas (hasta 3.14 a.p.f.). La mayor variación en los valores se observa en las muestras permotriásicas, reflejando un mayor grado de desequilibrio químico. Variaciones más significativas se observan en relación con el contenido en ferromagnesiomatos: muy bajo en los materiales del Permotrías, el grado de fengitización es máximo en el Carbonífero y vuelve a decrecer hasta alcanzar composiciones propias de moscovita en el miembro inferior. La tendencia generalmente admitida, de un aumento en la sustitución de Al por Fe+Mg en micas dioctáedricas, a profundidades crecientes (Cipriani et al., 1968; Guidotti et al., 1989) aparece en los sedimentos malagüídeos interrumpida, probablemente a causa de diferencias químicas importantes en las rocas totales, a lo largo de la secuencia.

La variación química es más notable en las cloritas y viene caracterizada por: (1) Descenso general en el contenido en SiIV (de 3.05 a.p.f. en el Permotrías a 2.69 a.p.f. en el Silúrico), si bien la variabilidad es baja en toda la secuencia. (2) Variaciones en el contenido en Al total (entre 2.88 a.p.f. en el Permotrías y 2.60 a.p.f. en el Carbonífero), y aumento gradual (hasta 2.83 a.p.f.) en el miembro inferior. (3) Sin embargo, las variaciones en Al total no aparecen necesariamente reflejadas en el contenido en AlIV, que descende gradualmente con la profundidad. (4) Variaciones en la relación Fe/Fe+Mg, en gran medida paralelas a las variaciones
ofrecidas por el Al total, que no ofrecen a lo largo de la secuencia una tendencia clara hacia la transición chamoxita —> clinocloro, frecuentemente descrita en el paso diagénese-metamorfismo. Variaciones similares han sido descritas también en cloritas de minerales volcánicos (Robinson et al., 1993).

En la Figura 2 se han recogido también las variaciones químicas más significativas en los minerales interstratificados. Dentro de cada grupo la evolución, para profundidades crecientes viene marcada por: (1) Descenso en el contenido en SiIV y (2) Descenso paralelo del contenido en AlIV. Estas variaciones son en gran medida paralelas a las observadas en la evolución de la composición del conjunto de minerales interstratificados, que además aún caracterizadas por contenidos específicos en Na, K y/o Ca, en las posiciones interlaminares.

Discusión y Conclusiones

En el caso de secuencias con litologías diversas, como es el caso de la secuencia maláguide, la composición química de las rocas totales refleja fundamentalmente el contenido relativo en cuarzo, feldespato y carbonatos, muy diferentes en niveles de areniscas (e incluso dentro de estos niveles), esquistos y pizarras. Por ello, hemos realizado el análisis de la evolución química en base a las variaciones determinadas dentro de cada grupo de minerales, teniendo en cuenta, simultáneamente, composiciones químicas y mineralógicas, deducidas éstas últimas a partir de los resultados de DRX. Un artificio similar ha sido utilizado por Eberl (1993).

El descenso considerable en Al total que aparece en cada grupo de filosilicatos a partir del límite Permutrías-Carbonífero, viene en gran medida determinado por la disminución brusca del contenido en minerales del grupo de la coalinita. Precisamente la intervención de estos minerales en algunas de las reacciones metamórficas condiciona las características químicas de los minerales desarrollados en materiales del Permutrías (moscovitas y cloritas con contenidos importantes en Al) y en sedimentos Carboníferos (tosuditas).

La evolución química en cloritas y minerales interstratificados, caracterizada por un descenso general del contenido en SiIV con la profundidad, refleja, en el caso de las cloritas, el aumento gradual de la temperatura (Hiller & Veidt, 1991; De Caritat et al., 1993). El descenso en SiIV en el caso de los minerales interstratificados puede ser, en principio, interpretado también como una función de la temperatura creciente. No obstante, los minerales interstratificados contienen siempre Si en mayor proporción que
las cloritas desarrolladas en niveles estratigráficamente equivalentes, indicando que, para valores homogéneos de la temperatura los minerales interstratificados (aún aquellos que no contienen esmectita) admiten más Si en su estructura que las cloritas.

Una evolución paralela en cloritas y minerales interstratificados se observa también en relación con el contenido en Fe+Mg. La tendencia general consiste en un aumento en ferromagnesianos con la profundidad, es decir, una transición de minerales di, trioctádricos a trioctádricos. Sin embargo, a profundidades similares, la relación Al/Fe+Mg es siempre superior en los sedimentos interstratificados, que aparecen así con un carácter más dioctádrico que las correspondientes cloritas. Estas diferencias en la ocupación octádrica viene además marcada por diferentes relaciones Fe/Fe+Mg en ambos grupos de minerales. El mayor contenido en Fe en los minerales interstratificados sugiere que su desarrollo puede venir condicionado por la disponibilidad de Fe y probablemente por la presencia de Fe³⁺ que justifica a menudo, en estos minerales la baja ocupación octádrica.

Agradecimientos

Este trabajo ha sido Elnanciado por la Junta de Andalucía (Grupo de Investigación n° 4082).

Referencias

