Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to go Please insert your reply or correction at the corresponding line in the proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Please confirm that given names and surnames have been identified correctly.</td>
</tr>
<tr>
<td>Q2</td>
<td>“nth samples” was changed to “No. of samples”. Please check if appropriate and amend if necessary.</td>
</tr>
<tr>
<td>Q3</td>
<td>Citation “Freyssinet, 2005” has not been found in the reference list. Please supply full details for this reference.</td>
</tr>
<tr>
<td>Q4</td>
<td>Highlights should consist of only 85 characters per bullet point, including spaces. However, the Highlights provided for this item exceed the maximum requirement; thus, they were not captured. Kindly provide replacement Highlights that conform to the requirement for us to proceed. For more information, please see the Guide for Authors.</td>
</tr>
<tr>
<td>Q5</td>
<td>Please check keywords if captured appropriately.</td>
</tr>
<tr>
<td>Q6</td>
<td>“Riotinto” was changed to “Rio Tinto” in all occurrences. Please check and amend if necessary.</td>
</tr>
<tr>
<td>Q7</td>
<td>Citation “Anthony et al., 2009” has not been found in the reference list. Please supply full details for this reference.</td>
</tr>
<tr>
<td>Q8</td>
<td>Citation “Seward, 1973” has not been found in the reference list. Please supply full details for this reference.</td>
</tr>
<tr>
<td>Q9</td>
<td>Chemical reactions (4) and (5) seem to be identical. Please check.</td>
</tr>
<tr>
<td>Q10, Q11</td>
<td>Please check if the insertion of a full stop here is appropriate and amend if necessary.</td>
</tr>
<tr>
<td>Q12</td>
<td>The citation “González, 2002” has been changed to match the author name/date in the reference list. Please check here and in subsequent occurrences, and correct if necessary.</td>
</tr>
<tr>
<td>Q13</td>
<td>Citation “Simancas et al., 2003” has not been found in the reference list. Please supply full details for this reference.</td>
</tr>
<tr>
<td>Q14</td>
<td>The citation “Simancas et al., 1983” has been changed to match the author name/date in the reference list. Please check here and in subsequent occurrences, and correct if necessary.</td>
</tr>
<tr>
<td>Q15</td>
<td>The word “botroidal” was changed to “botryoidal” in all occurrences. Please check and amend if necessary.</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>Q16</td>
<td>The word “respectively” was inserted here. Please check if appropriate and amend if necessary.</td>
</tr>
<tr>
<td>Q17</td>
<td>This sentence has been slightly modified for clarity. Please check that the meaning is still correct, and amend if necessary.</td>
</tr>
<tr>
<td>Q18</td>
<td>Please check the insertion of the preposition “to” here if appropriate and amend if necessary.</td>
</tr>
<tr>
<td>Q19, Q20</td>
<td>The phrase “shown in Eqs.” was inserted here. Please check if appropriate and amend if necessary.</td>
</tr>
<tr>
<td>Q21</td>
<td>Citation “Davis et al., 1996” has not been found in the reference list. Please supply full details for this reference.</td>
</tr>
<tr>
<td>Q22</td>
<td>Please provide an update for reference “Yesares et al., in preparation”.</td>
</tr>
</tbody>
</table>

Thank you for your assistance.
Q4 Supergene enrichment of precious metals by natural amalgamation in the Las Cruces weathering profile (Iberian Pyrite Belt, SW Spain)

Lola Yesares a,b,⁎, Reinaldo Sáez a, José Miguel Nieto a, Gabriel Ruiz de Almodóvar a, Stephen Cooper b

a Department of Geology, University of Huelva, Avenida de las Fuerzas Armadas, S/N, 21071 Huelva, Spain
b Technical Department of Cobre Las Cruces S.A., Ctra. SE-3410, Km 41.100, 41860 Gerena, Seville, Spain

A B S T R A C T

Natural Au–Ag–Hg alloys occur in the Las Cruces ore deposit, in the eastern part of the Iberian Pyrite Belt. They are mainly concentrated in the lower part of the gossan profile including a sheared black shale level where the gossan makes contact with a barren pyrite zone within the supergene Cu-rich mineralization.

Drill core analyses show a heterogeneous distribution of Au, Ag, and Hg within the weathering profile, with mean values of 5.1 ppm, 155 ppm, and 52 ppm, respectively. In general, the absolute tenures increase towards the bottom of the weathered profile. Mineralogical studies conducted on samples from the active mine workings indicate that Hg and precious metals occur mainly as Au–Ag–Hg alloys. These associations constitute the best potential resource for precious metals at the Las Cruces deposit.

This paper describes how this unusual precious metal enrichment is produced along the weathering profile by supergene processes. Combining paragenetic information, mineral chemistry and the data pertaining to the solubilities of Au, Ag, and Hg in a weathering profile, we suggest a two-stage genetic model for the formation of the Las Cruces Au–Ag–Hg mineralization: (1) release of Au, Ag, and Hg from the massive sulfide deposit by weathering processes during the gossan formation. At pH < 5.5 and Eh > 0.9 V conditions, Au, Ag and Hg are mobilized downward through the weathering profile as chloride complexes and fixed as elemental Au, halides, oxides, and sulfates; and (2) remobilization of Hg, Ag, and Au in the gossan after the deposit was buried beneath the Neogene carbonate-rich sedimentary cover. The buffering capacity of the percolating fluids due to their interaction with the carbonate-rich sedimentary pile leads to significant mineralogical and geochemical changes. At near-neutral conditions (pH = 6–7; Eh ≈ 0 V), Hg, Ag, and Au are newly-remobilized as thiosulfate, sulfate, and hydroxide complexes and newly-fixed by sorption on ferric hydroxide formation and as sulfates. Several cycles of dissolution–precipitation of Au, Ag, and Hg near the redox front occur by oscillations in the water table changes and in the pH–Eh conditions. The interaction of downward migrating fluids with high redox potentials (black shales and massive sulfides) seems to be responsible for the reduction of different complexes and for the precipitation of cinnabar, Ag-sulfides and sulfosalts as well as the precipitation of Au–Ag–Hg amalgams.

© 2013 Published by Elsevier B.V.

1. Introduction

The Iberian Pyrite Belt (IPB) has been continuously explored and mined for more than 4500 years (Nocete et al., 2005; Sáez et al., 2003) and includes precious metals within massive sulfide weathering profiles. Examples of gossans mined for Au and Ag since prehistoric times are Rio Tinto and Filón Sur-Tharsis. Las Cruces is a recently discovered volcanic-hosted massive sulfide deposit in the IPB whose supergene profile differs from known others and contains large resources of precious metals.

Supergene precious metal ores occur essentially as the result of concentration during the weathering of hypogene deposits. In near-surface environments, Ag and Au are released during the oxidative dissolution of primary sulfides. These metals are concentrated and redistributed through the oxidation profile by residual concentration processes.

The mobilization and enrichment of precious metals in oxidizing and acidic environments are well documented (Benedetti and Bouleguè, 1991; Boyle, 1979; Freyssinet et al., 2005; Hough et al., 2009; Reich et al., 2005; Webster and Mann, 1984). Under extreme conditions, precious metals are mobilized through the weathering profile via complexation by different anions, such as a CN–, OH–, NH4+, Cl–, I–, Br–, and HS– (Groen et al., 1990) until reaching an environment with physical–chemical conditions favorable for precipitation.

Under oxidizing conditions, native Au is the only specie stable (Krupp and Weiser, 1992), whereas Ag can occur as a native element, as halides such as chlorargyrite [ClAg], iodargyrite [IAg], and bromargyrite [BrAg]; or as sulfates of the josite group (i.e., argentojarosite [AgFe2(SO4)2(OH)4]) (Dutrizac and Jambor, 1987).

Regarding the supergene profiles of the IPB, native Au has been reported in Filón Sur-Tharsis (Capitán, 2006) and Rio Tinto (Viñals et al., 2007).
1. Introduction

The redistribution and fixation of precious metals in supergene environments have been well documented (Benedetti and Bouleguè, 1991; Krupp and Weiser, 1992; Mann, 1984; Webster and Mann, 1984). Different mechanisms for Au and Ag dissolution, mobilization, and precipitation have been proposed. In oxygenated aqueous solutions, Au and Ag are soluble and transported by organic complexes (Boyle et al., 1975), halogen complexes (Mann, 1984), hydroxide complexes (Wood, 1990), and sulfur ligand complexes (Webster, 1986).

Supergene redistribution of Au and Ag through the weathering profile is dependent on the nature and stability of anionic complexes and their behavior under near-surface weathering conditions (Webster and Mann, 1984). Au and Ag released from the oxidation of primary sulfides are slightly mobilized when the environmental conditions are extremely acidic. These species can be transported down short distances along the weathering profile to environments where the conditions are less acidic. Mann (1984) proposed that in an acidic, oxygenated, saline and Fe-rich aqueous stream environments (pH < 5.5; Eh > 0.9 V; activity Cl− > 10−12), precious metals are mobilized through the weathering profile as Au− and Ag+ chloride complexes (Webster and Mann, 1984).

These conditions are common in oxidized meteoric waters containing abundant chlorine derived from the dissolution of salts (Ross, 1997). The dissolution of Au and Ag to form chloride complexes is expressed by the following chemical reactions:

\[4Au + 16Cl^- + 3O_2 + 12H^+ = 4AuCl_4^- + 6H_2O (Mann, 1984) \]
\[4Ag + 4Cl^- + O_2 + 4H^+ = 4AgCl^0 + 2H_2O (Mann, 1984). \]

Au precipitation can be produced by inorganic reduction of Au chlorides by a slight decrease in Eh (Hough et al., 2008), and also by the reduction of the AuCl4− ion with Fe2+ by the reaction:

\[4AuCl_4^- + 3Fe^{2+} + 6H_2O = Au^0 + 3FeOOH + 4Cl^- + 9H^+ (Mann, 1984). \]

This reaction involves the simultaneous deposition of both native Au and iron hydroxide. However, AgCl is not precipitated as native Ag by the oxidation of Fe3+ because the redox potential for Ag+ is too low (Saunders, 1993) to reach the stable AgCl phase. Ag+ remains in solution, migrating downward (Saunders, 1993) until reaching an environment where the physico-chemical conditions are less extreme, allowing its precipitation as chlorargyrite.

The sulfide breakdown during weathering processes releases a number of metastable sulfur species as SH2−, SO3−, SO42−, and SO32− (Freysinnet et al., 2005). All of them can favor precious metal transport through the profile and can be transformed according to pH and oxygen fugacity (Krupp and Weiser, 1992). Au bisulfide complex [Au(SH)2] can occur in supergene environments under reducing conditions (Anthony et al., 2009; Webster, 1986) and pH near to neutral (Vlassopoulos and Wood, 1990), for example during early supergene alteration stages (Gray et al., 1992). Hence, SH2− ligand is not so important in supergene environments (Freysinnet et al., 2005) although it can be particularly significant in hydrothermal systems (Boyle, 1979; Seward, 1973).

At near-neutral conditions (pH = 6–7; Eh ≈ 0 V) and in the presence of weathered carbonate rocks, the formation of thiosulfate and/or sulfite ions during sulfide oxidation favors the migration of Au and Ag along the weathering profiles as Au−Ag(SO3)22− and Au−Ag(SO4)22− (Benedetti and Boulegé, 1991; Boyle, 1979; Webster and Mann, 1984). Due to its slow kinetic transformation (Rolla and Chakrabarti, 1982), thiosulfate could remain in solution over relatively long periods. Thus, thiosulfate is the most probable complex under near-surface environment and neutral conditions (Webster and Mann, 1984).

The dissolution of Au and Ag to form thiosulfate complexes is expressed by the chemical reactions:

\[2Au^0 + 4S_2O_3^{2-} + H^+ + 0.5SO_2 = 2Au\cdot S_2O_3^{2-} + H_2O (Freysinnet et al., 2005) \]
\[2Ag^0 + 4S_2O_3^{2-} + H^+ + 0.5SO_2 = 2Ag\cdot S_2O_3^{2-} + H_2O. \]

In addition, the precious metal mobilization as thiosulfate complexes have been successfully used to Au and Ag industrial extraction and recovery of different ore types (Aylmore and Muir, 2001).

However, if the redox conditions increase, thiosulfates are readily oxidized and converted to sulfates (Benedetti and Boulegé, 1991; Freysinnet et al., 2005). Au− sulfates complexes would readily decompose, leaving Au as an unfolded Au+ ion, which would be precipitated by reduction to Au0 as submicron particulates (Benedetti et al., 1991) or within the mineralized structures (Freysinnet et al., 2005).

The Au precipitation can be expressed by the following chemical reaction:

\[Au^+ + Fe^{2+} + 2H_2O = Au^0 + FeOOH + 3H^+ (Stroffregen, 1986). \]

Moreover, Ag sulfates remains as stable species in solution (Krupp and Weiser, 1992). The high solubility of Ag2SO4 makes its occurrence as a stable oxidation product of Ag unlikely, although more complex sulfoxide phases (i.e., argentojarosite) are common in sulfide weathering profiles (Dutrizac and Jambor, 1987). Hence, Ag2SO4 is transported through the oxidation profile to the water table, where Ag2SO4 becomes destabilized through reduction and Ag can be precipitated as sulfide below the redox front.

Hg mobilization during the massive sulfide weathering is less well documented. Therefore, little is known about the mechanisms of Hg dissolution and re-precipitation in these environments.

During sulfide weathering, mercourious compounds (Hg2+) are rapidly oxidized to mercuric forms (Hg2+) and are slightly mobilized through the weathering profiles as HgCl2, which is the stable species in solution under oxidizing and acidic conditions (Davis et al., 1997). The oxidative dissolution of Hg to form chloride complexes could occur through the reaction:

\[Hg^2+ + 2Cl^- + 3O_2 + 12H^+ = HgCl_2 + 6H_2O. \]

Under neutral and high pH conditions, Hg2+ is stable in solution and is easily complexed by OH−, enhancing its solubility by the reactions:

\[Hg^2+ + 0.5SO_2 + H_2O = Hg(OH)_2^{2+} + H^+. \]

The redistribution and fixation of secondary Hg-minerals through the weathering profile are dependent on the redox and pH conditions.

Under oxidizing and acidic conditions, Hg2+ can be precipitated as...
montoydite (HgO), calomel ([Hg₂Cl₂], and sulfate minerals of the jarosite group (Dutrizac and Eno, 1981) through the following chemical reactions:

\[2\text{HgCl}_2 + 2\text{Cl}^- = \text{Hg}_2\text{Cl}_2 + \text{Cl}_2\] (10)

\[\text{HgCl}_2 + \text{H}_2\text{O} = \text{HgO} + 2\text{Cl}^- + 2\text{H}^+\] (11)

\[0.5\text{Hg}^{2+} + 3\text{Fe}^{3+} + 2\text{SO}_4^{2-} + 6\text{H}_2\text{O} = \text{Hg}_0\text{Fe}_3(\text{SO}_4)_2(\text{OH})_6 + 6\text{H}^+\] (Dutrizac and Eno, 1981). (12)

In contrast, under neutral conditions, Hg\(^{2+}\) can be sorbed to ferric hydroxides up to pH 8 as Hg(OH)\(^{2+}\) (Davis et al., 1997). Furthermore, in Fe-rich environments, Fe\(^{3+}\) can act as a reductant, and its oxidation could conceivably couple to Hg\(^{2+}\) reduction. This process can be initiated by reactions with Fe\(^{2+}\) at mineral surfaces, resulting in the dissolution and release of Hg into the environment (Charlet et al., 2002) by the reaction:

\[\text{Hg(OH)}_2 + \text{Fe}^{2+} = \text{Fe(OH)}_3 + \text{Hg}^0\] (Charlet et al., 2002). (13)

This reaction implies a simultaneous deposition of both iron oxyhydroxides and Hg.

3. Geological setting

The Las Cruces VHMS deposit is located in the eastern part of the IPB. The deposit is covered by a thick sequence (140–150 m) of detrital and carbonated rocks belonging to the post-Alpine (Neogene–Quaternary) Guadalquivir River foreland basin (Fig. 1). The IPB is the largest domain of the South Portuguese Zone, the southernmost domain of the Iberian Variscan Massif (Julivert et al., 1974), and among the most prolific massive sulfide provinces in the world (Leistel et al., 1998; Sáez et al., 1999). Its stratigraphic record, Middle Devonian–Mississippian in age, is characterized by intense bimodal magmatic activity and an abundance of enormous massive sulfide deposits. From footwall to hanging wall, it has been classically subdivided into three main units: the Givetian–Famennian Pre-Volcanic Phyllite–Quartzite Group, the Late-Famennian–Tournaisian Volcano-Sedimentary Complex, and the Visean–Westphalian B Post-Volcanic Culm Group (Schermernhorn, 1971). The massive sulfide deposits of the IPB are included in the Volcano-Sedimentary Complex, always associated with felsic–volcaniclastic and/or black shale sequences. Geochronologic data have constrained the age of massive sulfide deposition to the Late Devonian–Mississippian (Barrie, 2002; Nesbit et al., 1999; Nieto et al., 2000). Palynological data obtained from hosting black shale of the main ore deposits suggest a massive sulfide event linked to the Devonian–Carboniferous boundary (González et al., 2002; González et al., 2006; Sáez et al., 2008). During the Pennsylvanian, the inversion of the tectonic regime from transtensional to compressional (Simancas et al., 2003) resulted in the deformation and the very low-grade metamorphism of the IPB rocks according to a thin-skinned tectonic model (Silva et al., 1990). As a result of the deformation, the exhumation of the Variscan chain exposed the massive sulfide deposits to the surface, thus promoting oxidation and the formation of gossans. Later, the Neogene transgression led to the burial of a part of the IPB under the post-Alpine sediments of the Guadalquivir and Sado river basins. Las Cruces and Lagoa Salgada represent cases of recently discovered massive sulfide deposits, hidden below the Neogene–Quaternary sedimentary cover.

4. Ore deposit

The Las Cruces deposit is located approximately 24 km NW of Seville (Spain). The mining project is currently operated by Cobre Las Cruces, a local subsidiary of the Immet Mining Corporation and Leucadia National Corporation. The present project involves the open pit mining and hydrometallurgical processing of 17.6 Mt of 6.2% Cu ore in a leaching plant close to the mine site. The current 12-year mining plan estimates the production of approximately 1 Mt of high-grade copper with a mean recovery of 92% of Cu content. In addition, there is approximately 2 Mt of gossan with significant contents of Au, Ag, and Pb.

The Las Cruces deposit consists of an approximately 100-m-thick massive sulfide body. It is hosted in a thick sequence of black shales, including felsic–volcanic and volcanioclastic rocks (Fig. 2A, B). The orebody extends over more than 1 km in the E–W direction, dipping to the north at approximately 35° (Fig. 2A), and is composed of a polymetallic massive sulfide body underlain by cupriferous and pyritic stockwork type mineralization. The upper part of the massive sulfide consists of a supergene profile that includes a copper-rich cementation zone, which constitutes the ore, and the upper gossan (Figs. 2A, 3A).

Several structural domains have been observed in the Las Cruces ore, which are in agreement with the tectonic style established for the IPB by Silva et al. (1990). The first fault system comprises subhorizontal trending faults, associated with the first Variscan deformation phase in the IPB (Fig. 3A). These low-angle fault systems were responsible for the overthrusting of different massive sulfide slices often being detached along the black shale hosting horizons. Examples of this structural framework have been described in the Tharsis (Tornos et al., 1998), Aznalcóllar (Almodóvar et al., 1998), Sotiel-Coronada (González et al., 2006), and Neves Corvo (Relvas et al., 2002) mine districts. At the Las Cruces deposit, this phenomenon is responsible for several massive sulfide sheets being stacked and limited by the sheared...
black shale sheets (Fig. 3B, C, D). The second and third fault systems
comprise subvertical faults (Fig. 3A), which have been related to
late-Variscan deformation (Simancas, 1983). The older system con-
sists of NNW/SSE trending faults, which control the secondary
mineralization processes. Faults belonging to this system, as well as
the ore deposit, are intersected by a younger system represented
by E–W high-angle faults.

The primary ore at the Las Cruces deposits exhibits mineralogical
features similar to other massive sulfide deposits in the IPB (Marcoux
et al., 1996) and is mainly composed of pyrite and small amounts of
sphalerite, chalcopyrite, and galena. Tetrahedrite–tennantite, arsenopy-
rite, and different Bi- and Pb-sulfosalts are common accessory minerals.
This ore is very irregular in shape and mineralogy, including barren
pyrite, polymetallic-rich and copper-rich facies.

The thickness of the overlying gossan ranges from 0 to 20 m. It is
limited at the bottom by a sharp horizontal contact with the massive
sulfides and at the top by an erosive discordant contact with the
sedimentary cover (Fig. 3A). The occurrence of gossan pebbles within

![Fig. 2.](image_url)

Fig. 2. (A) Geological sketch section; and (B) stratigraphic column of the Las Cruces deposit showing the different ore-types, the host rock sequence, and the sedimentary cover.

![Fig. 3.](image_url)

Fig. 3. Las Cruces outcrops overview. (A) NE–SW section of the open pit first stage showing the contact of the gossan with the primary ore (below) and with the sedimentary cover (above); (B) and (C): sheared black shale level. Drag folds indicating the direction of movement can be observed (D); (E) basal conglomerate: gossan pebbles in a glauconitic sand matrix; gossan facies: (F) Fe-oxide facies; (G) carbonate-sulfide facies; and (H) fracture-related facies.

Please cite this article as: Yesares, L., et al., Supergene enrichment of precious metals by natural amalgamation in the Las Cruces weathering profile (Iberian Pyrite Belt, SW Spain), Ore Geol. Rev. (2013), http://dx.doi.org/10.1016/j.oregeorev.2013.10.004
the basal conglomerate of the sedimentary cover (Fig. 3E) indicates that the weathering and oxidation of the massive sulfide predate the transgressive Neogene deposits. Regional biostratigraphic and geochronologic data on this sedimentary cover establish a Tortonian minimum age for gossan burial (Moreno et al., 2002), this data being consistent with the age proposed for the major period of IPB gossan formation (Essalhi et al., 2011; Velasco et al., 2013).

The Las Cruces gossan differs from other weathering profiles by (1) an uneven mineral association; and (2) its high mineralogical and geochemical heterogeneity both vertically and laterally as well as the absence of internal structure, which is common elsewhere for sulfide alteration profiles (Jambor et al., 2000; Scott et al., 2001) included IPB gossans (Capitán, 2006; Capitán et al., 2003). Unlike other gossans, which are mainly composed of oxidized phases (i.e., Fe-oxides and Fe-sulfates), the mineral composition of the Las Cruces gossan is dominated by iron reduced phases, including siderite and pyrite, whereas oxidized phases are subordinated. Calcite and galena are also major mineral components.

Despite the lack of internal structure within the Las Cruces gossan, its mineralogical and textural features define several facies:

- Carbonate-sulfide facies: This category constitutes the main facies of the gossan and is distributed heterogeneously through the profile (Fig. 3F). It is composed mostly of massive siderite and minor hematite, goethite, galena, and Fe-sulfides, including pyrite, marcasite, pyrrhotite and greigite. In addition, subordinate amount of Ag-sulfides and Au-Ag-Hg amalgams can be observed. These facies are characterized by dissolution–replacement textures in which massive siderite replace former Fe-oxhydroxides (i.e., hematite and goethite).

- Fe-oxide facies: Although pervasive in the gossan, the facies is usually located close to highly porous zones. It is mainly composed of goethite and hematite, with siderite, Fe-sulfides, and galena as subordinated minerals. Different textural patterns characterize Fe-oxhydroxides, including (1) primarily gossan relics cemented by siderite, (2) alternating botryoidal siderite and oxhydroxide microlayers, and (3) poorly developed colloforms resulting from the oxidation of siderite (Fig. 3G).

The relationships between the facies are not evident. However, some roughly vertical alternating pattern can be identified in the profile (Fig. 3A).

- Fracture-related facies: This category consists of coarse grained siderite, galena, and Fe-sulfides, which occur as euhedral equigranular aggregates filling voids associated with late fractures that cut the whole profile (Fig. 3H).

- Leached black shales: The contact between a decomposed barren pyrite zone, located at the top of the secondary Cu-rich ore, and gossan is marked by a 5-to-15-cm-thick black shale horizon. (Fig. 3 A, B, C, D). Open pit exposure suggests this contact to be controlled by a low-angle Variscan fault and the black shale horizon, acting as a detachment level during fault development. Due to the strong leaching, primary features in these rocks such as fissility, particle size and composition are poorly preserved.

The assignment as sheared black shales is supported by its PAAS normalized geochemical profile (Yesares et al., in preparation). This shows a typical geochemical black shale pattern but enriched in immobile elements such as Si, Al, Ti, Zr, Y, Sn, U, Th, W, and REE.

Leached black shales are mainly composed by residual minerals such as quartz, barite, monazite, and Ti-oxides. Moreover, the newly-formed mineralogy predominantly consists of supergene minerals as phyllosilicates of the smectite and kaolinite groups. In addition, fine-grained galena occurs as skeletal aggregates and Ag-sulfides, cinnabar and Au-Ag-Hg amalgams are common as filling voids. The barren pyrite within the supergene Cu-rich mineralization is located at the footwall of the black shale level.

Other lithologies have been described in the Las Cruces gossan on the basis of drill core lithochemical studies. For example, Knigth (2000) reported a “silica cap” between the gossan and the secondary massive sulfides. The silica cap is highly variable in thickness. It consists of fine grained silica clasts, siliceous cement and subordinate amounts of iron oxides and clays. This lithology has been identified in the open pit outcrops but their distributions are meagre.

The underlying massive sulfide includes a thick cementation zone, characterized by secondary Cu-sulfides such as chalcocite, digenite, djurleite, covellite, enargite, and bornite (Yesares et al., 2012). Ore distribution both in the gossan and Cu-rich cementation zones seems to be controlled by late-Variscan tectonic structures reactivated during the Alpine tectonic cycle (Yesares et al., 2012) (Fig. 3A).

5. Samples and analytical procedures

The most relevant geological, lithological, and structural observations and interpretations have been made during the construction of the open pit. The selected samples, mainly of gossan and other ore types were collected during the first and second mining stage of the open pit. In addition, some key samples have been obtained from drill cores.

In all, 231 polished sections were made for mineralogical and textural studies with optical and scanning electronic microscopes. Among them, 21 sections were used for detailed studies of Au-Ag-Hg. Amalgam characterizations were conducted after small surface analysis with a JEOL scanning electron microscope coupled with energy dispersive spectroscopy (SEM-EDS). Forty successful SEM analyses of amalgams were obtained. The mineral chemistry of Au-Ag-Hg amalgams was investigated by electron-microprobe analysis using a JEOL JXA-8200 Super Probe Electron Probe Micro-Analyzer (EPMA). Possible crystal zoning has also been checked. Concentrations of Ag, Au, and Hg were determined by wavelength-dispersive spectroscopy (WDS) equipment. In all, 57 successful EPMA analyses of amalgams have been obtained. Due to difficulties related to the high volatility of Hg, special operating conditions were employed.

The main operating parameters were 10 kV, 10 nA, and 5–8 μm. Pure Au and Ag and synthetic HgS (Au Mx, Ag Lx, and Hg Mx) were used as standards. Routine data reductions, including full matrix (ZAF) corrections, were performed. No corrections were made for potential “loss” of Hg during analysis. However, the migration of Hg in response to heating by the electron beam is believed to be systematic, as the analytical conditions and counting times were kept identical for the unknowns and the well-characterized standards. To prevent loss of Hg by evaporation during EPMA analyses, trace elements were not included in the analytical routine. However, the SEM–EDS analyses of amalgams show the consistent presence of Ag, Au and Hg in varying proportions, whereas trace elements occur in undetectable amounts.

Geochemical modeling of the precious metals and Hg has been undertaken after the statistical treatment of the Las Cruces database. This database includes geochemical analyses of cores from 305 drill holes performed during the exploration and evaluation stages. Ag, Au and Hg were measured in 8348 select samples from gossan, Cu-rich cementation zone, primary sulfides and host rocks. The chemical assays were undertaken in several full-accredited laboratories. A first set of samples (drill hole numbers CR001-CR256) was measured by Anamet Services (Avonmouth, UK), a second set of analysis (drill hole numbers CR257-CR301) by OMAC Laboratories (Ireland), and a third set by AGQ Labs (Seville, Spain). All analyses have been conducted by the same methodology. Ag and Hg were determined after 4 acids digestion (HF, HNO3, HCl and HClO4) with inductively coupled plasma-optical emission spectrometry (ICP-OES). The concentrations of Au in the select samples were performed by Ni fire assay followed by atomic absorption spectroscopy (AAS).
6. Results

6.1. Distribution of Au–Ag–Hg-bearing minerals

Exploration data regarding the geochemical features of the Las Cruces deposits suggest an association between the precious metals and Hg in the gossan. Drill core geochemical data, provided by Cobre Las Cruces, indicate a heterogeneous distribution of precious metals within the ore deposit. Representative values are included in Table 1.

In primary sulfides, Ag and Hg are mainly associated with the metallic ore. Ag shows mean concentrations of 42.40 ppm, with values up to 715 ppm. Hg reaches a maximum value of 815 ppm and a mean concentration of 52 ppm. Au is also mostly associated with the poly-metallic ore although minor amounts have been identified in Cu-rich ores. Au content in poly-metallic ores ranges between 0.02 ppm and 8.4 ppm, showing mean values of 0.7 ppm. The Cu-rich ore exhibit Au mean of 0.5 ppm ranging from 0.1 ppm to 1.65 ppm.

Ag, Hg and Au distributions show a strong heterogeneity within the supergene profile. The cementation zone exhibits mean values of 26.7 ppm Ag, 25 ppm Hg and 0.6 ppm Au, with individual values up to 1470 ppm Ag, 11085 ppm Hg and 285 ppm Au. The whole gossan appears enriched in Ag, Hg and Au relative to primary sulfides. Although the distribution of metal values is quite heterogeneous, rough zonation is observed in the gossan profile. Mean concentrations in the upper part are 63.35 ppm Ag, 32.30 ppm Hg and 2.90 ppm Au. These values increase significantly in the lower part of the gossan reaching maximum values of 18,950 ppm, 10,500 ppm and 352 ppm respectively and showing mean concentrations of 565 ppm Ag, 615 ppm Hg and 17.20 ppm Au (Fig. 4). The main precious metal concentrations occur associated either with the carbonate-sulfide facies close to the contact between gossan and the cementation zone, or with the sheared black shale level which makes the limit between barren pyrite zone and the secondary Cu-rich mineralization and gossan.

Two principal mineral associations are observed in the carbonate-sulfide facies: (I) The most frequent mineral association comprises of siderite, calcite, Fe-sulfides and galena (Fig. 5A, B). In the lower part of the gossan profile, this facies also contains precious metal-bearing phases such as aphanite, proustite, pyargyrîte, freibergite, marcasite, argentopyrite, sternbergite and Au–Ag–Hg amalgams. Common textures include: microcrystalline, euhedral–anhedral aggregates, skeletal aggregates, veinlets, filling fractures and voids, and intergrowths and overgrowths. Fracture and open space filling occur mainly in the lower part of the weathering profile. The commonest textures of the Ag-sulfides consist of: intergrowths and overgrowths between Ag-sulfides and pyrite; coarse grain euhedral aggregates of Ag-sulfides; and Ag-sulfide rims along pyrite edges (Fig. 6A). Au–Ag–Hg amalgams appear as finely disseminated skeletal aggregates, filling open spaces, and overgrowth with sulfides (Fig. 6A and B); and (II) Corroded fragments of Fe-rich oxides and oxyhydroxides. These are common as isolated fragments enclosed in later microcrystalline siderite (Fig. 5C) or as alternating microlayers (Fig. 5D). In addition, this association can show textures as: botryoidal, microcrystalline, and euhedral aggregates. Fragments of Fe-oxide are scarce but occur elsewhere along the gossan profile.

In the leached black shale level, the main mineral association is composed of newly-formed kaolinite and smectite along with abundant weathering-resistant minerals such as quartz, Nd–Ce–monazite, rutile and zircon. Remnants of primary sulfides, mainly pyrite, occur towards the bottom of the black shale level (Fig. 6C, D, E). The black shale–hosted Au–Ag–Hg-bearing assemblage is comprised of: proustite, pyargyrîte, imiterite, freibergite, argentopyrite, sternbergite, cinnabar, and Au–Ag–Hg amalgams. This assemblage fills open spaces within the black shale. Common textural features include: anhedral aggregates, veinlets, and intergrowths and overgrowths between Ag-sulfides and cinnabar. Au–Ag–Hg amalgams appear as coarsely disseminated grains arranged parallel to the main foliation in the black shales (Fig. 6C, D, E, F). In addition, late pyrite and galena can also be found as fine veins cross-cutting the previously described mineral association (Fig. 6C, D, F). In addition, Blake (2008) also reported rare fine-grained (~5 jam) euhedral to subhedral native Au grains included in the limonite-rich gossan. They are closely associated with siderite and limonite or linked to Cu–Fe-sulfides, native Bi, Fe-sulfides, bismuthinite and Pb-sulfide. However, this Au-bearing assemblage has not been observed in the present study.

6.2. Mineralogical characterizations of Au–Ag–Hg amalgams

Reflected light microscopy, SEM–EDS, and EPMA–WDS have been used to identify the amalgams found in the lower part of the gossan.

Table 1

<table>
<thead>
<tr>
<th>Element (ppm)</th>
<th>Au</th>
<th>Ag</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary ore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyritic</td>
<td>165</td>
<td>0.07–0.70</td>
<td>0.30</td>
</tr>
<tr>
<td>Polymetallic</td>
<td>2055</td>
<td>0.02–8.40</td>
<td>0.70</td>
</tr>
<tr>
<td>Cu-rich</td>
<td>539</td>
<td>0.10–1.65</td>
<td>0.50</td>
</tr>
<tr>
<td>Supergene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu-enrichment</td>
<td>4852</td>
<td>0.02–285</td>
<td>0.60</td>
</tr>
<tr>
<td>Gossan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper gossan</td>
<td>586</td>
<td>0.10–55.40</td>
<td>2.90</td>
</tr>
<tr>
<td>Lower gossan</td>
<td>151</td>
<td>0.50–352</td>
<td>17.20</td>
</tr>
</tbody>
</table>

Please cite this article as: Yesares, L., et al., Supergene enrichment of precious metals by natural amalgamation in the Las Cruces weathering profile (Iberian Pyrite Belt, SW Spain), Ore Geol. Rev. (2013), http://dx.doi.org/10.1016/j.oregeorev.2013.10.004
Fig. 5. Reflected light microscope images of the Las Cruces gossan. (A) intergrowth between massive siderite (sd) and subhedral aggregates of marcasite (mr) with pyrite (py) inclusions; (B) intergrowth between massive calcite (cal) and skeletal galena (gn) and pyrite (py); (C) relics of massive hematite (hm) cemented by microcrystalline siderite (sd); and (D) microbands of alternating siderite (sd) and hematite (hem) and microcrystalline siderite filling voids.

7. Discussion

7.1. Evolution of the Las Cruces gossan

The Las Cruces gossan lithology and mineralogy result from the complex redox history of the Las Cruces weathering profile, which can be explained as the result of the superposition of several genetic stages. During the Upper Oligocene-Lower Miocene exhumation of the IPB (Essalhi et al., 2011), the Las Cruces massive sulfide experienced oxidative weathering, gossan formation, and the precipitation of Fe-rich oxides, oxyhydroxides, and sulfates common in gossans (Fig. 5C). After the Neogene transgression, Las Cruces remained buried beneath the sedimentary cover. The interaction with meteoric fluids (Capitán, 2006), equilibrated with the carbonate-rich sedimentary pile above, resulted in physico-chemical changes towards reducing alkaline conditions (Capitán, 2006), favoring the formation of iron-reduced phases, such as carbonates and sulfides. As a result, early iron oxides, hydroxides, and sulfates were replaced by siderite and Fe-sulfides (Fig. 5A, D). These reducing conditions also involved the formation of galena and Pb-sulfosalts (Yesares et al., 2010) (Fig. 5B).

The Las Cruces gossan ore features provide strong evidence of the enrichment of immobile elements by the supergene lixiviation of massive sulfides (Blake, 2008). Thus, Au, Ag, and Hg were released from primary ores and are locally concentrated in the upper gossan by residual enrichment process. Amalgams were precipitated in the lower gossan during late stages to the supergene enrichment, as deduced from their textural relations with newly-formed phases and the kaolinitized host rock.

7.2. Relationship to other VMS deposits and weathering profiles in the region

Gossans in the IPB show typical features of massive sulfide weathering profiles (Capitán, 2006; Jambor et al., 2000; Scott et al., 2006).
such as: (i) major mineralogy formed by oxidized facies such as goethite, hematite, minerals of the jarosite group, and quartz; (ii) the main textures include: massive, boxwork, colloform and open space fillings; and (iii) vertical zonation. IPB gossans exhibit three separate zones with gradual contact between them: a lower zone composed by goethite and quartz with jarosite, an intermediate zone comprised of goethite, quartz and hematite and an upper zone dominated by hematite and quartz (Velasco et al., 2013). The distribution of precious metals in the IPB gossans is highly variable showing maximum values of 10.5 ppm Au and 105 ppm Ag (Velasco et al., 2013). Precious metals occur as fine-grained particles of native Au and Ag, and as halides such as iodargyrite and chlorargyrite associated with minerals of the jarosite group (e.g. Capitán, 2006; Velasco et al., 2013). The Las Cruces gossan shows some analogies with IPB gossan profiles such as: (i) sharp contacts between gossans and massive sulfides (Velasco et al., 2013; Yesares et al., 2010); (ii) enrichment in lesser mobile elements by supergene lixiviation (Blake, 2008; Capitán, 2006); and (iii) precious metal content increasing close to the gossan-massive sulfide contact (Velasco et al., 2013). Nevertheless, there are important differences: (i) main mineralogy comprised of carbonates, Fe-sulfides and galena. Oxidized minerals such as Fe-oxyhydroxides and sulfates are scarcer; (ii) lack of vertical zonation; (iii) heterogeneity in precious metal distribution showing Au and Ag mean values of 5.1 ppm and 155 ppm respectively, and reaching maximum values up to 352 ppm Au and 18950 ppm Ag; and (iv) precious metals mainly occur as Au–Ag–Hg and Ag–Hg amalgam particles. Some of these peculiar features have also been described in the Lagoa Salgada weathering profile (Gaspar et al., 1993; Oliveira et al., 2011).

Exposed IPB supergene profiles were all developed under similar conditions, and being different in features they can show the result of their generation along several stages (Velasco et al., 2013). These involve Miocene exhaustion of the massive sulfide bodies, the
subsequent oxidative weathering of sulfide minerals and a progressive intensification of the oxidation and leaching processes. Exposed IPB gossans have been subjected to subaerial conditions since the beginning of their formation to date, whereas Las Cruces and Lagoa Salgada gossans involve Miocene exhumation and massive sulfide oxidation followed by burial beneath the Tertiary cover and the evolution under the sedimentary pile. Examples of buried supergene profiles have been reported in VHMS deposits in the South Urals which are buried under Mesozoic–Cenozoic sediments. These supergene profiles are characterized by sideritized iron caps as well as newly-formed Fe-sulfides, galena, Hg-sulfides and Pb-sulfosalts (Belouguer et al., 2003, 2008).

No exhaustive studies have been performed up to now about the source of the Las Cruces precious metals and Hg. Available geochemical data (Table 1), together with the lack of evidence of external supply, suggest the primary polymeric and Cu-rich ores as the most feasible source for Au, Ag and Hg. In primary sul-des, Au is commonly closely associated with electrum (Hough et al., 2009), and As-rich pyrite or arsenopyrite (Cook and Chryssoulis, 1990; Reich et al., 2005; Sung et al., 2009), whereas tetrahedrite–tennantite is the most likely source of Ag (Sack, 1992) and Hg (Karup-Møller and Makovicky, 2003), with Au-bearing galena (Boyle, 1979) and Hg-rich sphalerite also being common. In the IPB, precious metals in the massive sulfide ores occur as auriferous arsenopyrite, native Au and electrum associated with the polymetallic mineralization and the stockwork (Leistel et al., 1998). Examples of these precious metal-bearing IPB sulfides can be found in the La Zarza massive sulfides, where visible native Au, electrum and Au–Ag–Hg amalgams have been reported (Ruiz and Samper, 1995). In the Migollas deposit, Ag-rich tetrahedrite and bournonite, Hg-rich sphalerite and Au–Ag–Hg amalgams in massive sulfides have been described (Velasco et al., 1999). In Neves Corvo, Au-rich arsenopyrite, Ag-rich tetrahedrite, native Au and electrum are associated with Cu-rich sulfides and the stockwork zone (Pinto et al., 2005). In Lagoa Salgada, Ag-rich tetrahedrite has been reported in the primary sulfides (Gaspar et al., 1993). Finally, native Au and electrum occur in the Tharsis stockwork type mineralization (Leistel et al., 1998; Velasco et al., 2000).

Genetic models for precious metal mineralization in the IPB massive sulfide deposits include several stages. Velasco et al. (1999, 2000) suggested Au precipitation as nanoparticles within early pyrite, whereas Ag and Hg were suggested to have been included as solid solutions within the tetrahedrite and sphalerite crystal lattices. A later stage, during the massive sulfide genesis, involved the Au, Ag and Hg release from primary sulfides, transport at high temperature (200–350°C) and precipitation of these elements as temperature decreased. Leistel et al. (1998) proposed two different mineralization processes, an earlier Au precipitation, as Au-rich electrum, at high temperature (300°C) mainly associated to the stockwork zones, and a later Au formation stage as Ag–Hg-rich electrum and Au-rich arsenopyrite, at lower temperature (280°C) and associated with polymetallic sulfides. Therefore, given the mineralogical and geochemical analogies between the Las Cruces and Lagoa Salgada gossans, the formation to date, whereas Las Cruces and Lagoa Salgada gossans involve Miocene exhumation and massive sulfide oxidation followed by burial beneath the Tertiary cover and the evolution under the sedimentary pile. Examples of buried supergene profiles have been reported in VHMS deposits in the South Urals which are buried under Mesozoic–Cenozoic sediments. These supergene profiles are characterized by sideritized iron caps as well as newly-formed Fe-sulfides, galena, Hg-sulfides and Pb-sulfosalts (Belouguer et al., 2003, 2008).

No exhaustive studies have been performed up to now about the source of the Las Cruces precious metals and Hg. Available geochemical data (Table 1), together with the lack of evidence of external supply, suggest the primary polymeric and Cu-rich ores as the most feasible source for Au, Ag and Hg. In primary sul-des, Au is commonly closely associated with electrum (Hough et al., 2009), and As-rich pyrite or arsenopyrite (Cook and Chryssoulis, 1990; Reich et al., 2005; Sung et al., 2009), whereas tetrahedrite–tennantite is the most likely source of Ag (Sack, 1992) and Hg (Karup-Møller and Makovicky, 2003), with Au-bearing galena (Boyle, 1979) and Hg-rich sphalerite also being common. In the IPB, precious metals in the massive sulfide ores occur as auriferous arsenopyrite, native Au and electrum associated with the polymetallic mineralization and the stockwork (Leistel et al., 1998). Examples of these precious metal-bearing IPB sulfides can be found in the La Zarza massive sulfides, where visible native Au, electrum and Au–Ag–Hg amalgams have been reported (Ruiz and Samper, 1995). In the Migollas deposit, Ag-rich tetrahedrite and bournonite, Hg-rich sphalerite and Au–Ag–Hg amalgams in massive sulfides have been described (Velasco et al., 1999). In Neves Corvo, Au-rich arsenopyrite, Ag-rich tetrahedrite, native Au and electrum are associated with Cu-rich sulfides and the stockwork zone (Pinto et al., 2005). In Lagoa Salgada, Ag-rich tetrahedrite has been reported in the primary sulfides (Gaspar et al., 1993). Finally, native Au and electrum occur in the Tharsis stockwork type mineralization (Leistel et al., 1998; Velasco et al., 2000).

Genetic models for precious metal mineralization in the IPB massive sulfide deposits include several stages. Velasco et al. (1999, 2000) suggested Au precipitation as nanoparticles within early pyrite, whereas Ag and Hg were suggested to have been included as solid solutions within the tetrahedrite and sphalerite crystal lattices. A later stage, during the massive sulfide genesis, involved the Au, Ag and Hg release from primary sulfides, transport at high temperature (200–350°C) and precipitation of these elements as temperature decreased. Leistel et al. (1998) proposed two different mineralization processes, an earlier Au precipitation, as Au-rich electrum, at high temperature (300°C) mainly associated to the stockwork zones, and a later Au formation stage as Ag–Hg-rich electrum and Au-rich arsenopyrite, at lower temperature (280°C) and associated with polymetallic sulfides. Therefore, given the mineralogical and geochemical analogies between the Las Cruces and Lagoa Salgada gossans, the formation...
In developing a model for the Las Cruces gossan Au–Ag–Hg mineralization, careful consideration must be given to the physico-chemical characteristics of the mineralizing solutions and data pertaining to the solubilities of Au, Ag, and Hg in a weathering profile. Thus, any model proposed for the Las Cruces gossan Au–Ag–Hg mineralization must accommodate the following features:

- The present mineralogical and geochemical features of the Las Cruces gossan are results of the overlapping of several genetic stages, including those related to oxidative weathering as well as those associated with changes in redox conditions during later burial beneath the Neogene sedimentary cover. This geological evolution involves hydrogeological flow fluctuations, oscillations of the water table, and changes in the physical and chemical characteristics of meteoric and basinal fluids. The environmental conditions at the gossan generation site changed progressively from oxidizing and acidic during the early gossan formation under surface exposure to near-neutral and reducing during the burial stage because of basinal fluid equilibration with the carbonate-rich sedimentary cover.

- An organic-matter-rich black shale horizon at the base of the gossan acts as a redox boundary suitable to Au–Ag–Hg precipitation.

With these features, a two-stage genetic model for Au–Ag–Hg amalgamation is proposed (Table 3 and Fig. 8):

- **Stage I:** The presence of Fe-rich oxides and oxyhydroxides enclosed in later microcrystalline siderite (Fig. 5C) is a strong argument for the massive sulfide oxidation after its exhumation and weathering.

 This is also supported by the occurrence of gossan pebbles within the Neogene sedimentary cover (Fig. 3E) which indicates the weathering and oxidation of the massive sulfide. Under acidic pH, iron released from the sulfides is oxidized and precipitated as Fe-rich oxysulfate or oxyhydroxide (Bigham and Nordstrom, 2000). Thus, the gossen is enriched in Fe-bearing phases which can persist over a wide pH range, with goethite dominating at pH values of 3–6, but easily transformed to hematite upon dehydration (Thorner and Wildman, 1984).

 Under these extreme conditions, precious metals and Hg are released from the primary sulfides and could be mobilized downward through the weathering profile as chloride complexes (Davis et al., 1997; Mann, 1984) according to Eqs. (1), (2), and (7) (see Section 2). The relationships between Au and limonite reported by Blake (2008) can be explained by the fixation of elemental Au associated to Fe-oxyhydroxide formation (Mann, 1984) (Eq. (3)), with Ag enriched as halides (Mann, 1984), whereas Hg could precipitate as halides, oxides, and sulfate minerals of the jarosite group (Dutrizac and Eno, 1981) through chemical reactions shown in Eqs. (10), (11), and (12), respectively.

- **Stage II:** The burial of the gossanized massive sulfides under the carbonate-rich sedimentary cover involved significant mineralogical and geochemical changes. Meteoric and basinal fluids were buffered to near-neutral conditions by interaction with the sedimentary pile, as is defined by the association of oxyhydroxides–siderite. According to textural criteria (i.e., microcrystalline siderite as cement of goethite and hematite fragments (Fig. 5C) or alternating microlayers of siderite and Fe-oxyhydroxide (Fig. 5D)), changes in chemical conditions occurred progressively to reach values of pH > 6.5 and Eh < 0 V, which are the siderite stability conditions (Garrels and Christ, 1965). During burial of the deposit and rising of the water table, the redox conditions were decreasingly reaching...
values of $E_{h} < -0.3$ V. This is suggested by the association of siderite–pyrite–pyrrhotite–galena (Garrels and Christ, 1965) (Fig. 5A, B).

Hence, under these conditions, fluids migrated downward through the weathering profile producing remobilization of Hg, Ag, and Au as thiosulfate, sulfate, and hydroxide complexes (Benedetti and Bouleguè, 1991; Boyle, 1979; Freyssinet et al., 2005; Hepler and Olofsson, 1975; Webster and Mann, 1984) as shown in Eqs. (4), (5), (8), and (9). At this stage, the decomposition of Au, Ag, and Hg complexes involves the precipitation of Au and Hg by sorption during ferric hydroxide formation (Benedetti and Bouleguè, 1991; Davis et al., 1997; Freyssinet et al., 2005) through chemical reactions shown in Eqs. (6) and (13). These features can explain the native Au co-existence in sideritic and/or limonitic matrix described by Blake (2008). The Ag fixation seems to be associated with the precipitation of minerals of the jarosite group (Dutrizac and Jambor, 1987) if the conditions are acidic and oxygenated, while under reducing conditions Ag precipitated as sulfides as occur in the carbonate–sulfide facies.

After burial, the redox and pH changes in basinal fluids seem to be controlled by oscillations in the water table in view of mineralogical and textural features (Fig. 5A, B, D). The neo-formation of kaolinite and smectite can be regarded as evidence that oxidized meteoric fluids have circulated through the black shale resulting in the intense leaching of this lithology above the water table. In contrast, the mineralogical identifications of large amounts of newly-formed cinnabar and Ag-sulfides which are precipitated in $E_{h} < 0$ V conditions (Davis et al., 1996; Sato, 1992), are supported by the later lower gossan development under reducing conditions below the water table. Nevertheless, the black shale level seems to behave as an important redox barrier in such a way that it usually constitutes the limit between the gossanized and the cementation zone. These favored the partial remobilization of the metals to the lower part of the gossan.

The successive water table oscillations together with the changes in the pH–E_{h} conditions could produce several cycles of partial remobilization of Au, Ag, and Hg near the redox front and close to the sheared black shale level. The interaction of downward migrating fluids with
highly reductant lithologies (i.e., black shales and massive sulfides) favors the precipitation of precious metals in elemental form. An analogous fixation mechanism of noble metals by fluid interactions with reduced lithologies has been reported for Au mineralizations in South Devon, England (Shepherd et al., 2005). In a similar way, the sheared black shale horizon, located at the boundary between the gossan and the sulfides, seems to play the primary role of the reductant front for Hg and precious metals in the Las Cruces deposit. The interactions of Au–Ag–Hg-rich solutions with the black shale level led to the oxidation and reduction of organic matter and sulfate respectively, together with the precipitation of Au, Ag, and Hg as native elements. This stage also involved the neo-formation of cinnabar, Ag-sulfides and sulfosalts as well as the precipitation of Au–Ag–Hg amalgams. Hence, the oxidizing processes linked to gossan formation appear to be efficient for the mobilization and enrichment of Au–Ag–Hg, whereas reducing processes associated with the decomposition and oxidation of organic matter are probably responsible for the deposition of Au–Ag–Hg amalgams in the Las Cruces gossan.

8. Concluding remarks

The geochemical and mineralogical features of the Las Cruces deposit show a high geochemical correlation between the Au, Ag, and Hg, which are highly concentrated near the base of the gossan, where the main mineral phases are Ag–Hg and Au–Ag–Hg alloys. These amalgams are mainly located in a strongly leached black shale horizon, which acted as an important redox front, in such a way that it usually constitutes the limit between the gossanized and primary sulfide ore.

Two ore-formation stages are identified. First, Au, Ag, and Hg were released by the dissolution of the primary sulfide ores under highly acidic and oxygenated conditions. These species were mobilized as chloride complexes and precipitated by reduction associated with Fe–oxyhydroxide formation and/or as halides and sulfates. Second, Au, Ag, and Hg were remobilized under neutral and slightly reduced conditions by the sediment-buffered solutions as thiosulfates, sulfates, and hydroxide complexes and their reprecipitation was linked to Au and Hg sorption during Fe-oxyhydroxide formation and Ag fixation as sulfates. Au, Ag, and Hg cyclic mobilizations, due to redox changes, generated metal-enriched solutions that precipitated after reaching the black shale horizon located at the base of the gossan, which act as a redox boundary due to the organic matter consumption during the supergene processes. This stage featured Au, Ag, and Hg reduction, resulting in the neo-formation of amalgams, cinnabar, and Ag-sulfides. These amalgams are the main Au–Ag-bearing mineral phases in the Las Cruces gossan and provide a possible additional economic resource for the deposit.

Krupp, R.E., Weiser, T., 1992. mobility of Au and Ag in lateritic weathering processes. This stage featured Au, Ag, and Hg reduction, resulting in the neo-formation of amalgams, cinnabar, and Ag-sulfides. These amalgams are the main Au–Ag-bearing mineral phases in the Las Cruces gossan and provide a possible additional economic resource for the deposit. This report is the first characterization of precious metal secondary enrichment by natural amalgamation of Au–Ag–Hg under supergene conditions. The mechanism involved in these precious metal enrichments differs from those proposed in the classic genetic model for supergene precious metal ores.

