Quantum Phase Transitions in Coupled Systems
An application of Catastrophe Theory

José-Enrique García-Ramos

Departamento de Física Aplicada, Universidad de Huelva, Huelva, Spain
enrique.ramos@dfaie.uhu.es

In collaboration with J.M. Arias, E. Freire, and P. Pérez-Fernández
The Lipkin model

The two-fluid Lipkin model

- Algebraic structure
- The Consistent-Q-like Lipkin Hamiltonian

Energy surface: mean field

Phase transition and Quantum Phase Transition in a nutshell

Phase diagram

With a little help from my ... Catastrophe Theory
Lipkin model

The SU(2) algebra

\[J^+ = t^s, \quad J^- = s^t, \quad J^0 = \frac{1}{2}(t^t - s^s), \quad J'^0 = J^0 + N/2 \]

\[[J^+, J^-] = 2J^0, \quad [J^0, J^\pm] = \pm J^\pm \]

The Hamiltonian

\[H = aJ'^0 + b(J^+ + J^-) + c(J^+ J^-) + d((J^+)^2 + (J^-)^2) + e(J^+ J'^0 + J'^0 J^-) + f(J'^0)^2 \]

The Consistent-Q-like Hamiltonian

\[H = x n_t + \frac{x - 1}{N} Q(y) Q(y), \]

where \(n_t = t^t \) and \(Q(y) = s^t t + t^s + y t^t \)
Two-fluid Lipkin model

The Hamiltonian

\[H = H_1 + H_2 + H_{12}, \]

where

\[H_i = a_i J'_i + b_i (J_i^+ + J_i^-) + c_i (J_i^+ J_i^-) + d_i ((J_i^+)^2 + (J_i^-)^2) \]
\[+ e_i (J_i^+ J'_i + J'_i J_i^-) + f_i (J'_i)^2 \]

\[H_{12} = w_1 (J_1^+ J_2^+ + J_1^- J_2^-) + w_2 (J_1^+ J_2^- + J_1^- J_2^+) + w_3 (J_1^+ J'_2 + J_1^- J'_2) \]
\[+ w_4 (J'_1 J_2^+ + J'_1 J_2^-) + w_5 J'_1 J'_2, \]

being

\[J'_i = J_i^0 + \frac{N}{2}. \]
Consistent-Q-like two-fluid Lipkin model

\[H = x (n_{t1} + n_{t2}) - \frac{1 - x}{N_1 + N_2} Q(y_1, y_2) \cdot Q(y_1, y_2) \]

where

\[n_{ti} = t_i^\dagger t_i \]
\[Q^{(y_1, y_2)} = (Q_1^{y_1} + Q_2^{y_2}) \]
\[Q_i^{y_i} = s_i^\dagger t_i + t_i^\dagger s_i + y_i \left(t_i^\dagger t_i \right) \]
Mean field, energy surface

Ground state

\[|g\rangle = \frac{1}{\sqrt{N_1!N_2!}} (\Gamma_1^\dagger)^{N_1} (\Gamma_2^\dagger)^{N_2} |0\rangle \]

\[\Gamma_i^\dagger = \frac{1}{\sqrt{1 + \beta_i^2}} (s_i^\dagger + \beta_i t_i^\dagger) \]

Energy

\[
\frac{E(\beta_1, \beta_2, x, y_1, y_2)}{N_1 + N_2} = \frac{x}{2} \left(\frac{\beta_1^2}{1 + \beta_1^2} + \frac{\beta_2^2}{1 + \beta_2^2} \right) \\
- \frac{1 - x}{4} \left(\frac{1}{(1 + \beta_1^2)^2} (2 \beta_1 + y_1 \beta_1^2)^2 \right) \\
+ \frac{1}{(1 + \beta_2^2)^2} (2 \beta_2 + y_2 \beta_2^2)^2 \\
+ 2 \frac{1}{(1 + \beta_1^2)} \frac{1}{(1 + \beta_2^2)} (2 \beta_1 + y_1 \beta_1^2)(2 \beta_2 + y_2 \beta_2^2) \]
Figure: Contour plot of a selected two-fluid Lipkin Hamiltonian.
Macroscopic/Classical Phase Transitions

Definition of phase and phase transition

- **Phase**: state of matter that is uniform throughout, not only in chemical composition but also in physical properties.
- **Phase Transition**: abrupt change in one or more properties of the system.

The phase of the system

- Most stable phase of matter is the one with the lowest thermodynamic potential Φ. This is a function of some parameters that are allowed to change ($F(T,V), F(T,B); G(T,p), G(T,M)$).
- Φ is analogous to the potential energy, $V(x)$, of a particle in a one dimensional well. The system looks for the minimum energy going into the bottom of the potential.
Macroscopic/Classical Phase Transitions

- **Control parameter**: variable that affects the system, it can be changed smoothly and “arbitrarily”.
- **Order parameter**: observable that changes as a function of the control parameter and that defines the “phase” of the system.
- **Ordered and disordered phases** correspond to a value of the order parameter equal and different from zero, respectively.
- **Order of a phase transition**: order of the first derivative of the Gibbs potential with respect to the control parameter that first experiences a discontinuity: first, continuous (second order).
Examples of Macroscopic Phase Transitions

First order phase transition.
Liquid-gas

Second order phase transition.
Paramagnetic-ferromagnetic
What is happening at the phase transition point?

- First order phase transition
- Second order phase transition
QPT occurs at some critical value, x_c, of the control parameter x that controls an interaction strength in the system’s Hamiltonian $H(x)$. It is implicit a zero temperature.

\[\hat{H} = x \hat{H}_1 + (1 - x) \hat{H}_2 \]

At the critical point:

- The ground state energy is nonanalytic.
- The gap Δ between the first excited state and the ground state vanishes.
The variation of the order parameter
Phase diagram
Figure: Phase diagram of the Q-like two-fluid Lipkin model
Numerical results 1

Figure: $y_1 = 0$, $y_2 = 0$
Figure: $y_1 = 0.5$, $y_2 = -0.5$
Figure: \(y_1 = 1, \ y_2 = 1 \)
Figure: $y_1 = 1, y_2 = -1$
Numerical results 4b

Figure:

\[y_1 = 1, \quad y_2 = -1 \]
Figure: $y_1 = 1$, $y_2 = -1$
What is for Catastrophe Theory?

Some notes

- Catastrophe theory (CT) is framed in the theory of singularities for differentiable mappings and in the theory of bifurcations, therefore it deals with singularities of smooth real-valued functions and tries to classify such singularities.

- CT attempts to study how the qualitative nature of the solutions of equations depends on the parameters that appear in the equations (Gilmore 1981).

- CT explains how the state of a system can change suddenly under a smooth change in the control variables.
Let us assume a system described by a real family of potentials:

$$V(x, \lambda) \in \mathbb{R}$$

where $x \in \mathbb{R}^n$ are the state (order) variables and $\lambda \in \mathbb{R}^r$ are the control parameters.

In this family one can find three types of points:

- Regular points: $\nabla V \neq 0$.
- Morse points (isolated critical points):
 $\nabla V = 0$ and $|\mathcal{H}_{ij}| \neq 0$.
- Non-Morse points (degenerated critical points):
 $\nabla V = 0$ and $|\mathcal{H}_{ij}| = 0$.
Relevant theorems

- Morse lemma for isolated critical points.
 \[V(x) \rightarrow x^2 \]

- Thom theorem for degenerated critical points.
 \[V(x) \rightarrow g(x) + \text{unfolding} \]

- Splitting lemma for potential with several variables.
 \[V(x, y, z) \rightarrow g(x) + \text{unfolding} + y^2 - z^2 \]
Substitution of $V(x, \lambda)$ by a truncated Taylor expansion $V(x, \lambda)_{pol}$, being the germ the higher order term (the order of the Taylor expansion is the determinacy...).

Establish the mapping between $V(x, \lambda)_{pol}$ and a canonical form through a nonlinear change of variables.

Work out $V(x, \lambda)_{pol}$ for getting the bifurcation and the Maxwell set.
A local Taylor expansion

- Let us make a Taylor expansion around $\beta_1 = 0$ and $\beta_2 = 0$.
- Moreover we will take as variables the eigenvectors of the Hessian matrix.

$$\mathcal{H} = \begin{pmatrix}
\frac{\partial^2 E}{\partial \beta_1^2} & \frac{\partial^2 E}{\partial \beta_1 \partial \beta_2} \\
\frac{\partial^2 E}{\partial \beta_2 \partial \beta_1} & \frac{\partial^2 E}{\partial \beta_2^2}
\end{pmatrix} = \begin{pmatrix}
3x - 2 & 2x - 2 \\
2x - 2 & 3x - 2
\end{pmatrix}.$$

The two eigenvalues are $5x - 4$ and x, and the corresponding eigenvectors eigenvectors are,

$$\beta_a = \frac{1}{2} (\beta_1 + \beta_2),$$
$$\beta_b = \frac{1}{2} (\beta_1 - \beta_2).$$
A different view of the energy surface

- Let us make a Taylor expansion around $\beta_1 = 0$ and $\beta_2 = 0$.
- Moreover we will take as variables the eigenvectors of the Hessian matrix.

$$E(x, y, y', \beta_a, \beta_b) = \frac{(5x - 4)\beta_a^2 + 4(x - 1)y\beta_a^3 + (8 - 9x + y^2(x - 1))\beta_a^4 + \Theta(\beta_a^5) + x\beta_b^2 + \Theta(\beta_a\beta_b^2, \beta_b\beta_a^2)}{N}$$

with $y = (y_1 + y_2)/2$ and $y' = (y_1 - y_2)/2$.

In order to cancel the higher order ($\beta_a^i\beta_b^j$ with $j > 1$) we have to implement a nonlinear transformation in β_b

$$\tilde{\beta}_b = \beta_b + \sum_{i+j>1} a_{ij}\beta_a^i\beta_b^j$$

β_a becomes the essential variable while β_b the non-essential one.
A different view of the energy surface

For \(y' = 0 \)

\[
\frac{E(x, y, \beta_a, \beta_b)}{N} = (5x - 4)\beta_a^2 + 4(x - 1)y\beta_a^3 + \left(y^2(x - 1) + 8 - 9x \right)\beta_a^4 + O(\beta_a^5) + x\beta_b^2
\]
A different view of the energy surface

For $y' = 0$

\[
\frac{E(x, y, \beta_a, \beta_b)}{N} = (5x - 4)\beta_a^2 + 4(x - 1)y\beta_a^3 \\
+ \left(y^2(x - 1) + 8 - 9x\right)\beta_a^4 + O(\beta_a^5) + x\beta_b^2
\]

For $y = 0$

\[
\frac{E(x, y', \beta_a, \beta_b)}{N} = (5x - 4)\beta_a^2 + \left(8 - 9x - \frac{16(x - 1)^2y'^2}{x}\right)\beta_a^4 \\
+ \frac{1}{2} \left(26x - 24 + \frac{128(x - 1)^3y'^2(y'^2 - 6)}{x^2}\right)\beta_a^6 \\
+ O(\beta_a^7) + x\beta_b^2
\]
For the general Hamiltonian

\[
\frac{E(x, y, y', \beta_a, \beta_b)}{N} = (5x - 4)\beta_a^2 + 4(x - 1)y\beta_a^3 + \left(8 - 9x + y^2(x - 1) + \frac{16y'^2}{x}(2x - x^2 - 1)\right)\beta_a^4
\]

\[
+ \frac{8(x - 1)y \left((6y'^2 - 1)x^2 - 14y'^2x + 8y'^2\right)}{x^2} \beta_a^5
\]

\[
+ \frac{1}{x^3} \left((64y'^4 - 384y'^2 - 2y^2(82y'^2 + 1) + 13)x^4 + 2(-96y'^4 + 576y'^2 \right)
\]

\[
+ y^2(372y'^2 + 1) - 6)x^3 + 4y'^2(48(y'^2 - 6) - 313y^2)x^2
\]

\[
+ 32y'^2(29y^2 - 2y'^2 + 12)x - 256y^2y'^2 \right) \beta_a^6
\]

\[
+ O(\beta_a^7) + x\beta_b^2
\]
A different view of the energy surface

For the general Hamiltonian

\[
\frac{E(x, y, y', \beta_a, \beta_b)}{N} = (5x - 4)\beta_a^2 + 4(x - 1)y\beta_a^3 + \left(8 - 9x + y^2(x - 1) + \frac{16y'^2}{x}(2x - x^2 - 1)\right)\beta_a^4 \\
+ \frac{8(x - 1)y \left((6y'^2 - 1)x^2 - 14y'^2x + 8y'^2\right)}{x^2} \beta_a^5 \\
+ \frac{1}{x^3} \left((64y'^4 - 384y'^2 - 2y^2(82y'^2 + 1) + 13)x^4 + 2(-96y'^4 + 576y'^2)\right) \\
+ y^2(372y'^2 + 1) - 6)x^3 + 4y'^2(48(y'^2 - 6) - 313y^2)x^2 \\
+ 32y'^2(29y^2 - 2y'^2 + 12)x - 256y^2y'^2 \beta_a^6 \\
+ O(\beta_a^7) + x\beta_b^2
\]

The function is 6 — determined. The relevant elementary catastrophe of this model will be the butterfly (A_+_5). Note that we only have 3 control parameters, though the universal unfolding of the butterfly has 4 parameters.
Summary and conclusions

- We have presented the Consistent-Q like doble Lipkin Hamiltonian.
Summary and conclusions

- We have presented the Consistent-Q like doble Lipkin Hamiltonian.
- We have analyze the appearance of phase transitions in this model.
We have presented the Consistent-Q like doble Lipkin Hamiltonian.
We have analyze the appearance of phase transitions in this model.
We used Catastrophe Theory to disentangle the order of the transitions.
We have presented the Consistent-Q like doble Lipkin Hamiltonian.
We have analyze the appearance of phase transitions in this model.
We used Catastrophe Theory to disentangle the order of the transitions.
We found that the appropriated catastrophe is the \textit{butterfly} \((A_+5)\).
Summary and conclusions

- We have presented the Consistent-Q like doble Lipkin Hamiltonian.
- We have analyze the appearance of phase transitions in this model.
- We used Catastrophe Theory to disentangle the order of the transitions.
- We found that the appropriated catastrophe is the butterfly (A_{1+5}).

Thank you!
Numerical results

Figure: $x = 0.5$, $y_1 = 1$
Definition of \(h(\mathbf{x}, \lambda) = V(\mathbf{x} + \mathbf{x}^0, \lambda + \lambda^0) - V(\mathbf{x}^0, \lambda^0) \), where \((\mathbf{x}^0, \lambda^0)\) correspond to a degenerated critical point.

Definition of the germ: \(g(\mathbf{x}) = h(\mathbf{x}, 0) \).

Calculation of the determinacy and the codimension of \(g(\mathbf{x}) \) through the \(k \)-jet of \(g(\mathbf{x}) \) (truncated Taylor expansion with \(k \) term).

Study the \(k \)-transversality of \(g(\mathbf{x}) \) in order to establish the isomorphism between \(h(\mathbf{x}, \lambda) \) and a canonical unfolding of \(g(\mathbf{x}) \).

Note that it is only possible to prove the existence of an isomorphism but this DOES NOT provides the necessary change of coordinates.
Figure: Energy spectrum (per boson) for a Lipkin model with $N = 50$, $\alpha = x$ and $y = 0$.
The coordinates

Figure: Coordinates of the Q-like two-fluid Lipkin space.

\[H = x (n_{t1} + n_{t2}) - \frac{1 - x}{N_1 + N_2} Q(y_1, y_2) \cdot Q(y_1, y_2) \]