Contrasting shallowing versus deepening upward cycles and their position in a carbonate ramp (Lower Cretaceous, Gorbea, Bizkaia)

Ciclos de somerización, ciclos de profundización y su posición en una rampa carbonatada (Cretácico inferior, Gorbea, Pyrenees)

1. Gómez-Pérez

Dpto. de Mineralogía y Petrología, Univ. del País Vasco / Euskal Herriko Unibertsitatea, APDO 544, 48080 Bilbao.

Abstract

Contrasting deepening versus shallowing upward cycles formed in different depositional settings of a carbonate ramp: shallowing upward cycles characterize the inner ramp, whereas deepening upward cycles characterize the mid ramp. No cyclicity is preserved in the outer ramp. The cycle type and the ramp constructional dynamics is controlled by the ramp depositional gradient and the rates of relative sea level change.

Resumen

Se ha determinado el desarrollo de ciclos de profundización y ciclos de somerización en dos diferentes dominios de una rampa carbonatada. Los ciclos de somerización caracterizan la zona interna de la rampa, mientras que los ciclos de profundización caracterizan la zona media de la misma. No se reconoce ciclicitad en la rampa externa. El tipo de ciclo y la dinámica de construcción de la rampa están controlados por el gradiente deposicional del sistema y por el nivel relativo del mar.

Key words: Carbonate ramp, shallowing upward cycle, deepening upward cycle, ramp gradient, relative sea level.

Geogaceta, 22 (1997), 77-80
ISSN: 0213683X

Introduction

Both shallowing and deepening upward cycles in carbonate environments are well known in the literature. Shallowing upward cycles have been frequently described from shallow marine carbonate platforms (i.e. James, 1984). They form as a result of relative sea level still stand or fall, and generally conclude with subaerial exposure of the platform, which terminates carbonate deposition. Deepening upward cycles are not so well known from carbonate shallow marine environments. They characterize transgressive stages in which carbonate platforms are not able to keep up with rising relative sea level. They are often capped by hardgrounds and condensation horizons representing slowdown of carbonate sedimentation rates.

A symmetric shallowing-deepening upward cycle should form as a result of a complete cycle of relative sea level rise and fall, disregard the sedimentary environment. However, these symmetric cycles are rare, and either the shallowing upward or the deepening upward term dominate, or they are represented exclusively.

The cycle type, "shallowing, deepening, mixed", is described in relation to the depositional environment -inner versus mid ramp- in an early Cretaceous shallow marine carbonate ramp from the Banque-Cantabrian.
basin. The identification of the cycle type, along with facies types and other sedimentological characteristics, will help in the interpretation of a ramp depositional setting, specially when working with discontinuous outcrops or subsurface data. This could also be true for other depositional systems and environments in the geological record.

Geological setting

The Egalezaburu ramp is a part of the Aptian-Albian Gorbea carbonate platform, formed on a paleohigh in a pericratonic rift basin. The rift formed during Lower Cretaceous tectonic distensive stages related to the opening of the Bay of Biscay and the North Atlantic. The Gorbea platform evolved from four depositional stages from the Upper Aptian to the Upper Albian (Gómez-Pérez, 1994; Fernández-Mendiola et al., 1993) (Fig. 1).

The cycles described in this work are a constituent part of the early Albian Egalezaburu carbonate ramp. According to facies distribution the ramp is subdivided in 3 depositional environments (Fig. 2): 1) inner ramp, made up of fossiliferous limestones, 2) mid ramp, made up of marls and skeletal grainstones, and 3) outer ramp, marl dominated. The transition from mid to outer ramp is locally characterized by breccias and megabreccias accumulated in a sedimentary trough. Based on these characteristics, the system is classified as a distally steepened ramp. The reported cyclicity is evident both in the inner and mid ramp settings, but not in the outer ramp. Four stacked ramp cycles are recognized with similar characteristics throughout the section, although they differ from the inner to the mid ramp.

Proximal ramp cycles

An innermost ramp ideal cycle is tens of meters thick, dominated by fossiliferous limestones, and made up of the following terms: 1) coral-oolithoid marls and coral packstones, 2) peloidal rudist-Chordronota wackestones, and 3) Bacillaria irregularis RADOVIC (algal) boundstones. The sedimentary environments deduced from this facies succession vary from low energy subtidal areas in the lower part to the photic zone (1), to moderate energy subtidal in the photic zone (2), to low energy-restricted water circulation in the shallow subtidal to intertidal zone (3). The cycles are capped by microdissolution features pointing to subaerial exposure. Facies and depositional environments indicate therefore a gradually shallower and more restricted environment, resulting in the development of shallowing upward cycles (Fig. 3a). No deepening upward trend is observed at any point in the innermost ramp cycles. More complete shallowing-deepening upward (mixed) cycles are however recognized in the outermost zones of the inner ramp, near the inner to mid ramp transition zone (Fig. 3b). Chordronota and milliolid packstones represent in this area the shallowest and most restricted facies. Microdissolution features are not recognized capping the cycles, and transition from the shallowest terms of the cycles to deeper terms is gradual.

Mid ramp cycles

A mid ramp ideal cycle is also tens of meters thick, dominated by marls, and made up of the following terms (Fig. 4a): 1) skeletal grainstones-packstones resting on an erosive surface, 2) coral-rudist wackestones (local bioherms), and 3) marls/argillaceous marls. The outer ramp is characterized by thin bedding sets of marls and marly grainstones accumulating in a sedimentary trough.
limestones. The uppermost part of the cycle includes occasionally skeletal packstone beds, and is capped by the up to 2 meters deep erosive surface. The represented sedimentary environments range from very shallow high-energy in the photic zone and above wave base (1) to a moderate energy environment in the photic zone and near the wave base level (2), and to a low energy environment below the photic zone and the wave base level (3). In the trough area the limestone units are made up of breccias and megabreccias lying on erosive surfaces, and formed gravitationally because of depositional instability. They grade upward to skeletal grainstones and to marls (Fig. 4b). The facies succession reflects a gradually deeper and less energetic environments, resulting in the formation of deepening upward cycles. A thin shallowing upward term reflecting increasing energy is locally represented by the uppermost packstone beds, although it is rare, and probably often eliminated by the erosion on top of the cycle. The erosive surface is the base of the overlying cycle, and represents the most energetic and shallowest conditions in the mid ramp. Erosion likely resulted from action of waves and currents in a very shallow marine environment.

Ramp constructional dynamics

The constructional dynamics of the Egalezaburu carbonate ramp is closely controlled by relative sea level changes (Fig. 5), responsible for the development of the described cycles.

The shallow water calcarenites of the mid-ramp are considered lowstand deposits, and have no equivalent on the inner ramp (Fig. 5-1). They made up shoals and gullies and changed gradually to marls and argillaceous limestones of the outer ramp. They lie on the erosive surfaces, related to breccias and olistoliths in the mid-lower ramp sedimentary trough. This facies arrangement resembles closely the classic ramp models (i.e. Ahl, 1973; Read, 1985), controlled by water depth and energy levels.

The transgressive deposits are represented by bioherms of the mid ramp and orbitolinitid marls at the base of the inner ramp cycles (Fig. 5-2). The shallow water fossiliferous limestones of the inner ramp are considered highstand deposits, and are equivalent to marls with rare storm deposits on the mid ramp (Fig. 5-2). These depositional facies arrangement was controlled by the photic zone base level and it is considered a protected ramp (sensu Burchette and Wright, 1992), presenting similarities with the biothermal complexes (Burchette, 1981).

We observe, therefore, that during relative highstands shallow water deposition occurred on the inner ramp, and during relative lowstands on the mid ramp. Consequently shifts in the shallow water carbonate factory between these settings occurred. The shift is sharp and rapid basinward (inner to mid ramp) and involves subaerial exposure of the inner ramp and erosion on the mid ramp with fast falling sea level. The shift platformward (mid to inner ramp) is rapid but gradual, and it implies a period of retented sedimentation on the inner ramp.

Discussion

Theoretically the transgressive and regressive terms of a cycle should be represented in both inner and mid ramp environments. However the cycles are commonly incomplete, dominating shallowing upward cycles on the inner ramp, and deepening upward cycles on the outer ramp. This fact is related to the relative sea level trend, depositional site, and ramp depositional gradient.

During early regressive stages carbonate factory is active in the inner ramp setting, and with stable or falling sea level accommodation space decreases and the inner ramp facies belt could prograde over mid ramp facies belt. This was not however observed for the Egalezaburu ramp, and it is interpreted as the result of a low ramp sedimentary gradient and a fast relative sea level fall, which resulted in a basinward shift of the coast line and a rapid exposure of wide areas of the inner ramp, preventing progradation of inner ramp facies belts. Some carbonate grains are however transported to the mid ramp with falling sea level, just before erosion occurs, conforming local, thin, shallowing upward sequences. Therefore, for the time when a shallowing sequence could have developed on the mid
ramp, deep-water conditions changed too rapidly to very shallow-water to allow the formation of a well developed shallowing upward sequence, and erosion occurred instead.

On the mid-ramp erosive surface the carbonate factory starts in very shallow high energy conditions, with a slowly rising relative sea level trend. At this point the carbonate factory is then active on the mid ramp, and it is inactive on the inner ramp (subaerially exposed). A deepening upward cycle forms on the mid ramp as relative sea level rises. Simultaneously the inner ramp is gradually flooded, and it remains initially under relatively deep-water conditions. A period of time is necessary for the factory to recover (start-up phase, sensu Kendall and Schlager, 1981), and for the time the factory is again active the relative sea level rise slows down, and the development of a shallowing upward sequence on the inner ramp starts again, as the mid ramp remains now in deep-water conditions.

Regarding the different types of carbonate sediment produced on the inner ramp during highstands and on the mid ramp during lowstands, the difference could be related to factors as depth, wave and photic zone base levels, controlled by paleogeographic and oceanographic changes. Climatic changes from high to lowstand conditions could also be responsible for the sedimentary style variations, as in the examples provided by James (1996), where grainy sediments characterize cold water ramps, while benthic communities flourish in warm water conditions.

A younger example in which a very similar arrangement of facies and cycle types was recognized, and this model could be applied, has been recently presented by Payros (1997) for a Eocene carbonate platform of the western Pyrenees.

Conclusions

Different cycles formed on a carbonate ramp: shallowing-upward cycles formed on the inner ramp, and asymmetric deepening-upward dominated cycles formed on the mid ramp. More complete mixed, but still shallowing dominated cycles formed in intermediate positions, on the outermost inner ramp. The more complete cycles are those of the outermost inner ramp, where deposition was uninterrupted: no subaerial exposure or erosion is reported with low sea level. These are followed by the mid ramp cycles, for which variable rates of erosion occurred on top. The most proximal inner ramp is the site where the cycles would be more incomplete, as the periods of subaerial exposure imply hiatuses. The cycle type is controlled by the relative sea level trend, the ramp depositional gradient, and the depositional setting.

Shallow water sedimentary style also varied from the inner to the mid ramp: fossiloferous wackestones formed on the inner ramp, as skeletal grainstones and packstones formed on the mid ramp. Controls on sediment type could be an interaction of climatic, paleogeographic and palaeoceanographic factors. Depending on the cycle type and composition we can interpret its position on this particular carbonate ramp. This could also be valid for ramp systems of different ages and settings, and likely for other types of carbonate depositional systems as well.

Acknowledgments

Funding by the University of the Basque Country project UPV 130.310-EB177/96.

References