Actas de la I Conferencia sobre Gestión de Olores en el Medio Ambiente
Uso de una Nariz electrónica para el estudio de la biofiltración de α-pineno con composts de residuos sólidos urbanos y restos de poda

Monitoring the biofiltration of α-pinene vapours through municipal solid waste and pruning residues composts using an e-nose

R. López1, I. Cabeza1, J. R. Lock-Wah-Hoon1, I. Giráldez2, M. Ruiz3, M. J. Diaz3

1Instituto de Recursos Naturales y Agrobiología de Sevilla-CSIC, Avda. Reina Mercedes 10, 41012 Sevilla. rhunez@irnase.csic.es.
2Departamento de Química y Ciencia de los Materiales, Facultad de Ciencias Experimentales, Univ. de Huelva, Campus Universitario El Carmen, Avenida de las Fuerzas Armadas, 21071-Huelva.
3Departamento de Ingeniería Química, Química Física y Química Orgánica, Facultad de Ciencias Experimentales, Univ. de Huelva, Campus Universitario El Carmen, Avenida de las Fuerzas Armadas, 21071-Huelva.

Palabras clave: Compuestos orgánicos volátiles, terpeno

Keywords: Volatile organic compounds, terpenoid

Resumen

Las plantas de compostaje causan frecuentemente problemas de malos olores por los compuestos orgánicos volátiles (COV) emitidos, entre ellos el pineno. En el presente trabajo se estudia la eficacia de dos biofiltros rellenos con diferentes compost de RSU y restos de poda (P) en la biofiltración de α-pineno y la incidencia de diferentes condiciones operativas, en particular de la humedad del lecho de compost, haciendo uso de una combinación de técnicas: medidor de COV con detector de fotoionización, nariz electrónica y GC-MS. Ambos tipos de biofiltros mostraron gran eficacia en la biodegradación de α-pineno, con eficiencia del 100% para una concentración inicial de hasta 50 ppmv. La eficiencia de biodegradación resultó muy dependiente de la humedad del lecho, con una importante reducción al disminuir la humedad por debajo de 66% rms en el caso de RSU o del 51% rms en el caso de RSU+P. Tanto con la nariz electrónica como mediante GC-MS se comprobó que la degradación de α-pineno fue completa, sin que aparecieran compuestos intermedios de degradación. Sin embargo, la nariz mostró una emisión de fondo propia de cada biofiltro por debajo del límite de detección de las otras técnicas. La nariz electrónica demostró ser una herramienta muy útil, simplificando el muestreo y permitiendo realizar un seguimiento casi en continuo. Los biofiltros basados en RSU y restos de poda son eficaces para la biofiltración de pineno aunque la humedad del sistema debe ser cuidadosamente controlada.

Abstract

The volatile organic compound (VOC) α-pinene, one of the most abundant component emitted during the composting of urban waste (MSW) and pruning waste (P), was treated in biofilters filled up with a MSW compost or a MSW+P compost. A photoionization detector was used to carry out the monitoring of the biofilters efficiency
but GC-MS and an electronic nose were also used for the process study. Moisture content in biofilters below 66% (dw, MSW) or 51% (dw, MSW) made efficiency decrease to less than 90%. GC-MS spectra indicated no intermedeate products from α-pinene degradation appeared but e-nose data indicates a "smell" corresponding to S-compounds produced in MSW biofilter. These results show that electronic noses could become a powerful tool for the monitoring of VOC compounds in biofiltering and composting processes.

1. Introducción

Las plantas de compostaje originan frecuentemente problemas de malos olores en sus alrededores, lo que causa su rechazo e incluso puede dar lugar a problemas de salud (Tsai et al, 2008). Estos olores son causados por compuestos orgánicos volátiles (COVs) que tienen su origen en la degradación microbiana de los residuos domésticos y de plantas. Puesto que los compuestos emitidos en el compostaje son de origen natural son susceptibles de experimentar biodegradación. La biofiltración es considerada como un sistema de tratamiento de olores ventajoso (Schlegelmilch et al, 2005). En el compostaje de diferentes materiales vegetales el tipo de los terpenos, y entre ellos, el α-pineno, es frecuentemente el compuesto predominante, con emisiones que representan desde el 10.2 al 72.7% de las emisiones totales (Büyükşönumz ve Evans, 2007). La biofiltración habitualmente se monitoriza mediante el uso de cromatografía de gases o medidas olfatométricas (Chen et al, 2008; Delgado-Rodríguez et al, 2011). Diversos estudios han mostrado el potencial de uso de narices electrónicas para el seguimiento de estos procesos (Litarru, 2007) aunque técnicas de medida más rápidas de COVs como los equipos COV-PID (detector de fotoionización) también han sido utilizadas (Delgado Rodríguez et al, 2011).

En el presente trabajo se estudia la eficacia de 2 biofiltros utilizando como material de relleno compost de residuos sólidos urbanos (RSU) y compost de RSU-restos de poda para el tratamiento de aire contaminado con α-pineno, haciendo uso de diferentes técnicas: medidor COV-PID, nariz electrónica y GC-MS. Se presta particular atención a la influencia del contenido de humedad en la eficiencia de la biodegradación.

2. Materiales y métodos

2.1. Diseño experimental

Para el relleno de los biofiltros se utilizó un compost maduro de RSU o un compost de RSU y restos de poda (RSUP) en relación volumétrica 1:1. Más detalles sobre estos composts pueden encontrarse en Delgado-Rodríguez et al (2011). En ambos casos se utilizaron las fracciones granulométricas entre 7 y 20 mm de los composts (López et al, 2011). Las principales características de ambos materiales de relleno aparecen en la Tabla 1. Inicialmente el material de relleno de ambos biofiltros se saturó con agua. Durante el ensayo, la humedad se estimó periódicamente determinando el peso del biofilto completo. Puesto que se trata de dos materiales diferentes los datos de humedad se han expresado sobre materia seca (sms).

Los biofiltros fueron construidos con tubos de PVC de 0,11 m de diámetro y 1 m de altura y con corriente de aire ascendente. Para producir la corriente de aire con pimento se usó un compresor de aire cuya salida se hizo burbujear en agua o no según se deseara mantener o reducir la humedad de los biofiltros. Parte del flujo de aire se hizo pasar por un sistema de burbujeo conteniendo α-pineno (Merck, >95% pureza). La concentración de salida de α-pineno se reguló mediante una válvula. Finalmente, la
línea de aire principal que contenía el contaminante se dividió en dos líneas que alimentaban los dos biofiltros. Antes de cada biofiltro se dispuso un punto de muestreo de aire. El flujo de entrada de aire a cada biofiltro se ajustó a un tiempo de residencia en lecho vacío (EBRT) de 66±3 s. Cada día se adicionaron al burbujeador cantidades variables de α-pineno, según la fase del ensayo que se realizará, con una concentración media durante el ensayo de 11,6 ppm, de α-pineno. Cada día la alimentación de pineno a los biofiltros se realizó durante 6-8 horas, manteniendo una concentración estable.

El ensayo completo se realizó en varias fases en las cuales se variaron diversas condiciones operativas: a) Días 1-40, con aire de entrada por debajo de 5 ppm, de α-pineno y con humedad máxima en los biofiltros; b) Días 80-144, con aire de entrada con concentración creciente de α-pineno hasta llegar a más de 1600 ppm; c) Días 154-184, con aire de entrada con concentración constante de α-pineno y reducción de la humedad de los biofiltros.

| Prospecto Fisico-Químico de los sinCompactos de los biofiltros (valor medio de 4 repeticiones ± desviación estándar) |
|-----------------|-----------------|-----------------|
| Densidad aparente | Densidad aparente |
| Materia Orgánica | Materia Orgánica |
| N-Kjeldahl | N-Kjeldahl |
| pH | pH |
| C.E.(1:5 vol) | C.E.(1:5 vol) |
| 705 ± 50 | 374 ± 54 |
| 301 ± 82 | 842 ± 93 |
| 14.1 ± 1.4 | 11.0 ± 0.4 |
| 6.55 ± 0.17 | 5.60 ± 0.22 |
| 1245 ± 2 | 1157 ± 3 |

2.2 Determinaciones analíticas

La medición de pineno se ha realizado mediante una unidad COV (MultiRAE IR, PGM-54, RAE Systems, San José, CA, EEUU) con un detector de fotólisis (PID) equipado con una lámpara de 10,6 eV. La sensibilidad de este detector es de 0,1 ppm, Varios investigadores (Karlik et al., 2002; Ojala et al., 2006) han empleado esta técnica para obtener información rápida de la emisión de mezclas de COVs con carácter semicuantitativo. En este experimento, en que el aire que se mide sólo contiene α-pineno, la medida realizada por este detector varía linealmente con su concentración. Como el detector PID se calibra con isobutileno, las lecturas se transformaron a concentración de α-pineno multiplicándolas por el factor 0,31 (RAE SYSTEMS, 2002).

Los puntos de muestreo se situaron inmediatamente antes de la entrada y a la salida de cada biofiltro, y las medidas se realizaron utilizando la bomba interna de muestreo del medidor PID, fijando su flujo en 0,150 L/min. La lectura se tomó cuando se estabilizaba, normalmente en menos de 30 s. Este instrumento no detecta agua, pero puede producirse una menor señal del PID si se da condensación en la lámpara UV (Ojala et al., 2006). Para evitar este problema se colocó un filtro de tejido de material nuevo y de material particularizado. En cada punto de muestreo se realizaron cada día tres medidas replicadas, con intervalos de 1 hora entre ellas.

Se ha utilizado también la nariz electrónica PEN3 (Airsense Analytics GmbH, Hagenover, Alemania) provista con un conjunto de 10 sensores metal-óxido. El conjunto de lecturas de los sensores fue analizado por el propio software del instrumento mediante análisis de componentes principales (PCA) o análisis discriminante (DFA). Las determinaciones con nariz electrónica se realizaron directamente en los mismos puntos de muestreo que con el detector PID, efectuándose 3 medidas en cada muestra además

Conferencia sobre Olores en el Medio Ambiente, Madrid 2012 173
de aire ambiente del edificio. Para las medidas se utilizó un tiempo de 60 s, necesario para conseguir la estabilización de la señal de los sensores. Se analizan mediante PCA las lecturas correspondientes al intervalo de 50 a 60 s de las tres repeticiones realizadas a cada tipo de muestra. Aunque se realizaron varios muestreos durante el desarrollo del experimento se recogen en este trabajo los datos correspondientes al día 24/10/2011 en el que habían transcurrido 223 días desde el inicio del ensayo.

Una vez durante el desarrollo del ensayo se tomaron muestras para análisis por cromatografía, del aire de entrada a los biofiltros y de la salida de ambos biofiltros aunque estos resultados sólo se comentan someramente por motivos de espacio.

3. Resultados y discusión

En la Figura 1 se muestra la eficiencia de ambos biofiltros en las dos primeras etapas. En la primera etapa (días 1-40), la humedad se mantuvo entre 112-101% sm para el biofiltro RSU y entre 100-89% sm para el biofiltro RSUP. Para el biofiltro RSU fue necesario un período de 10 días para alcanzar una eficiencia de eliminación de pineno mayor del 90%. Este período de aclimatación fue más largo para el biofiltro RSUP, de 25 días hasta alcanzar un 80%. Estos períodos de aclimatación fueron dilatados respecto al encontrado por Bagherpour et al. (2005) para la biofiltración de α-pinen en un biofiltro de compost-astillas que fue sólo de 2 días, debido al periodo previo de envejecimiento de 6 meses del material del biofiltro. En otros casos se han encontrado períodos de aclimatación de 1-2 meses (van Groenestijn and Liu, 2002) también para la biofiltración de α-pinen en lo que los períodos de 10 ó 25 días encontrados aquí deben ser considerados como de duración intermedia.

Durante la siguiente fase (días 80-144) se fue incrementando la concentración de pineno. La eficiencia en ambos biofiltros disminuyó por debajo del 90% para concentraciones de pineno superiores a 30 ppmv. Después del día 121 se observa una mayor eficiencia de eliminación en el biofiltro RSUP: para una concentración media de pineno en la entrada a los biofiltros de 672 ppmv, la eficiencia media de eliminación fue del 33.8 % en el biofiltro RSU y del 48.4 % en el biofiltro RSUP. Estos valores corresponden a una eliminación de α-pinen 79 y 113 g/m³ de lecho /h para RSU y RSUP respectivamente. Mohseni and Allen (2000) consiguieron una eliminación de 40-45 g/m³ de relleno /h en biofiltros similares, de astillas/compost de champiñón, aunque con 20 s de EBRT y al 95% de eficiencia mientras que Bagherpour et al. (2005) alcanzaron 227 g/m³ de relleno /h con un 95% de eficiencia.

En la tercera fase del ensayo (días 154-184) (Figura 2) se redujo paulatinamente la humedad de los biofiltros prescindiendo de la prehumificación, con una concentración media en el aire de alimentación de 17 ppmv. Tras el corto período de parada previa fueron necesarios 3 días en ambos biofiltros para recuperar un 100% de eficiencia, con un 77% de humedad en el caso del RSU y un 91% para RSUP. Por debajo de un 66% de humedad en el caso del biofiltro RSU y de un 51% en el RSUP la eficiencia cayó a menos del 90%, decreciendo en ambos biofiltros de forma aproximadamente lineal al ir disminuyendo la humedad. Por tanto la humedad de máxima eficacia estaría comprendida entre un 112% (saturación de agua) y un 66% en el caso del biofiltro RSU y entre un 100 y un 51% en el RSUP. Estos valores concuerdan bien con el valor del 66% sm (40% sobre base húmeda) que indican Morales et al (2003) como límite inferior para materiales orgánicos tales como compost.

Los análisis cromatográficos realizados correspondieron a muestras de los biofiltros, con una concentración de α-pinen de 17.6 ppmv, en la entrada, de 0,0 ppmv, en salida de RSU y de 10.4 ppmv, en salida de RSUP. Los cromatogramas mostraron
picos concordantes con estas concentraciones y no mostraron la aparición de nuevos compuestos que pudieran indicar una degradación parcial del pineno introducido o una emisión de COVs proveniente de los propios biofiltros.

La representación gráfica del análisis de componentes principales (PCA) realizado a los datos de la nariz electrónica se muestra en la figura 3. El día en que se realizaron las medidas la humedad del biofiltro RSU era del 57.5% y la del biofiltro RSUP del 43.5%. Debido a esta reducida humedad la eficiencia en el biofiltro RSUP fue limitada: el aire de entrada contenía 7.8 ppm de α-pineno, la salida de RSU tenía 0,2 con una eficiencia de eliminación del 98% y la salida de RSUP estaba en 4.3 ppm, lo que supone un 45% de eficiencia. Se incluyen también las medidas realizadas en aire ambiente del edificio. En el análisis representado en la figura se utilizan únicamente las señales de los sensores W6S que detecta preferentemente hidrógeno, W1W que detecta compuestos de azufre orgánico y W3S que detecta metano y alifáticos, que se mostraron como los más significativos. Se observa que las muestras de Entrada y de Salida de RSUP son muy similares entre sí y diferenciadas de las muestras de Salida de RSU y a su vez del aire ambiente. Los sensores W6S-hidrógeno y W1W-azufre orgánico son los responsables de las diferencias en este eje. Dado que estos compuestos no están relacionados directamente con pineno, cuya estructura química aparece en la figura, la diferencia entre muestras podría ser debida a emisión de compuestos de estos grupos por el propio biofiltro, generando una huella de olor característica asociada al mismo. Estos compuestos en cualquier caso no han sido detectados mediante cromatografía. El hidrógeno suele estar asociado a condiciones anaeróbicas por lo que su presencia podría ser debida a la presencia de zonas saturadas de humedad en el interior del biofiltro. Las diferencias en el eje vertical, con muy poca varianza asociada, están más influenciadas por el sensor W3S-metano y alifáticos que sí son las familias de compuestos más ampliamente encontradas por GC-MS (Figura 3).
4. Conclusiones

La humedad influyó de forma muy notable en la eficiencia de la biofiltración de α-pineno en compost. Los biofiltros necesitaron un período de aclimatación largo (10 días para RSU y 25 días para RSUP) para llegar a una eficiencia significativa. Una vez alcanzada la máxima eficiencia, esta se redujo de forma proporcional al reducirse la humedad a valores por debajo de 66% smw (MSW) o del 51% smw (MSWP). En general, el biofiltro RSUP mostró una eficiencia superior que el RSU. No se han detectado en ningún momento compuestos intermedios que pudieran provenir de la degradación de pineno aunque los análisis mediante nariz electrónica indicaron que el biofiltro RSU, aun en condiciones de degradación completa del pineno, emitió un "olor", no detectado por GC-MS y que es por tanto "muy sufil", que puede ser atribuido a compuestos orgánicos con S y a la existencia de microzonas anaerobias en el biofiltro.

5. Agradecimientos

Este trabajo ha sido financiado por CICYT-FEDER, proyecto CTM2007-62117/TECNO y mediante una beca JAE Predoc 062 otorgada a Iván Cabeza.

6. Referencias

